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Abstract— This paper describes how to implement interactive
evolutionary computation (IEC) into a human-robot commu-
nication system. IEC is an evolutionary computation (EC) in
which the fitness function is performed by human assessors.
We used IEC to configure the human-robot communication
system. We have already simulated IEC’s application. In this
paper, we implemented IEC into a real robot. Since this
experiment leads considerable burdens on both the robot and
experimental subjects, we propose the human-machine hybrid
evaluation (HMHE) to increase the diversity within the genetic
pool without increasing the number of interactions. We used a
communication robot, WAMOEBA-3 (Waseda Artificial Mind
On Emotion BAse), which is appropriate for this experiment. In
the experiment, human assessors interacted with WAMOEBA-
3 in various ways. The fitness values increased gradually,
and assessors felt the robot learnt the motions they desired.
Therefore, it was confirmed that the IEC is most suitable as the
communication learning system.

Index Terms— Human-Robot Interaction, Communication
Robot, Interactive Evolutionary Computation

I. INTRODUCTION

In recent years, many companies and researchers have been
developing many different kinds of robots, which are expected
to contribute to our lives. These robots should be able
to communicate with people, however the communication
capabilities of current robots are poor when compared to
humans.

Most communication robots are developed using ‘model-
based’ techniques. They have their own models (scenarios) of
communication, and can only communicate with people based
on the models. Although these techniques are currently suit-
able to achieve the context sensitive communication, such as
verbal communication, the variety of behaviors is physically
limited.

Therefore, it is strongly required that the robots are able
to adapt to the situations changing continuously. We think
that evolutionary computation (EC) is suitable for learning
communicative motions. In EC, various possible solutions are
generated and tested. Since the diversity of behaviors can be
kept high, it can prevent people from boredom throughout the
learning experiment.

However, there is a potential problem, even if we use any
kind of learning algorithms. It is a problem of quantitative

evaluation. Though it is indispensable to evaluate the robot’s
behaviors, it is quite difficult to evaluate the robot’s commu-
nicative behaviors quantitatively rather than qualitatively.

To solve this problem, we used interactive evolutionary
computation (IEC), which is constructed of techniques of
interactive learning and EC.

In this paper, we discuss how to implement IEC into a
real robot system. In the next section, we describe IEC in
detail. We also show a problem of IEC in communication
learning. In section III, we propose the method of human
machine hybrid evaluation (HMHE), which reduces human
fatigue without decreasing population size. In section IV, we
describe the robot we tested. We used a communication robot,
WAMOEBA-3, which was designed as a platform robot for
communication experiments. In section V, we describe the
implementation of the IEC with HMHE is described in detail.
In section VI, we describe the experimental setting. In section
VII, we show results of this experiment and in section VIII,
we discuss the results. Finally, we present our conclusion and
describe our future work.

II. INTERACTIVE EVOLUTIONARY COMPUTATION

Interactive evolutionary computation (IEC) is an evolution-
ary computation whose fitness function is provided by human
assessors. IEC, therefore, makes it possible to apply EC into
human subjective optimization [5]. IEC has been applied to
aesthetic areas, such as art, music, and so on. It has also been
applied to robots [4] [13].

On the other hand, we aimed to use IEC for human-robot
communication. Since we believe that communication can be
learnt only via mutual interaction between a human being and
a robot, our system consists of both of them. Therefore, in our
experiment, assessors interact with a robot and simultaneously
evaluate its response.

However, in our case, there are two problems. One is
human fatigue, and the other is hardware error. IEC process
takes very long time to learn, since the assessor must coop-
erate with a tireless robot to evaluate individuals. This is a
burden for both human beings and a robot.



III. HUMAN-MACHINE HYBRID EVALUATION

To minimize human fatigue, we need to reduce the number
of evaluation, that is, we should decrease the population size
and generations. However, that usually results in the genetic
pool’s convergence which makes the assessors bored. One
way to avoid the assessor’s boredom is ‘mutation’ because
it diverses the genetic pool. Since the mutation is a random
process, however, mutation makes it difficult to refrec human
assessor’s preference.

To solve this problem, we proposed the human-machine
hybrid evaluation (HMHE). In IEC with HMHE, an assessor
tests only some selected individuals. As for the others, the
system automatically estimates the fitness values of them
based on the results the assessor tested before. With this
method, we can increase the population size of the genetic
pool without increasing the assessor’s fatigue.

Moreover, to improve the HMHE, we deviced the selection
method. If the selected genes have similar data to each other,
the estimation of the method becomes poorer. In order to
analyze the genes, we used a self-organization map (SOM)
[6]. The SOM is an algorithm that is suitable for analyzing
large multi-dimensional dataset. In the SOM, similar vectors
are placed close to each other and dissimilar vectors are
placed further away from each other. The individuals are
selected using it as follows: first, the SOM is trained by the
dataset of genes in the genetic pool (see Fig.1(a)). Next, seven
genes are selected; each selected gene has the best matching
dataset with each of the seven neurons placed at the positions
shown in Fig.1(b). In this way, we can select individuals
that have distant dataset of genes from each other, which is
efficient for the estimation function.
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Fig. 1. Positions of selected genes on SOM

Our proposed algorithm is shown in Figure 2.
First, initial genes are generated at random. Next, some

genes are selected using the SOM. Then, the selected genes
are translated into pheno-type (parameters of a motion gen-
erator) and installed into a robot. An assessor interacts with
the robot, and evaluates the gene individually. This sequence
is repeated until all the selected genes are evaluated. Whereas
unselected genes are automatically evaluated by the estima-
tion function. Their fitness values are estimated on the basis
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Fig. 2. IEC with HMHE

of the Euclidian distance from the dataset of the genes given
the assessor’s subjective fitness values previously.

After all the genes are evaluated both automatically
and manually, the EC applies genetic operators (selection,
crossover, and mutation) to the genetic pool and generates
more appropriate genes.

We have already confirmed efficiency of this algorithm in a
simulation. The simulation confirmed that this algorithm can
keep diversity of the genetic pool at a high level, and stop the
fitness value’s drops which is caused by the human boredom
[11].

IV. WAMOEBA-3

As described above, our IEC experiment takes a con-
siderable amount of time, because an assessor individually
evaluates many individuals. Therefore, the robot must have
a variety of behaviors to keep the assessor’s interest. It
also must be harmless for people and easy to maintain and
customize. Another important feature that the robot requires
is independency, that is, it can move without the cables for en-
ergy supply or control, because those cables are inconvenient
when the robot moves dynamically.

In this paper, we used a communication robot named
“WAMOEBA-3”(Waseda Artificial Mind On Emotion Base)
(Fig. 3). WAMOEBA-3 is an independent, wheeled robot,
with inbuilt batteries and a PC. Its upper body is similar to
human ones and its size is similar to the average size of a
Japanese child: 656 [mm] long, 825 [mm] wide, 1316 [mm]
tall. It weighs approximately 105 [kg]. It is equipped with
two arms (7 degrees of freedom) and a head (8 degrees of
freedom). Each joint has a torque sensor to measure the stress
on the arm and head. The head is equipped with 2 CCD
cameras and 2 ears. Each camera can independently move
horizontally, and each ear can rotate horizontally, too.

WAMOEBA-3 is also equipped with an omni-directional
vehicle for locomotion. The vehicle moves in any direction



Fig. 3. WAMOEBA-3

without actually turning at any stage. It has 8 bumper sensors
and 8 ultrasonic sensors on the vehicle.

TABLE I

SPECIFICATIONS OF WAMOEBA-3

Dimensions mm 1316(H)×825(L)×656(W)
Total Weight kg 105
Max speed km/h 3.5

Payload kgf/hand 5.0
Drive Time hours 1.5
Drive Camera DOF 1+1×2=3

Member Ear DOF 2
Neck DOF 3

Vehicle DOF 3
Arm DOF 6×2=12
Hand DOF 1×2=2

Outside Vision CCD Color camera × 2
Sensors (10×Optical zoom,

4×Degital zoom)
Sound input microphone×2

(Directional hearing,
Voice recognition)

Sound output Speeker(Voice synthesis)
Distance Ultra sonic sensor×8

Collission Bumper switch×8
Joint stress Torque sensor×14

Structural material Extra super duralumin
Titanium alloy(Ti-6Al-4V)

aluminium(52S)
CPU Pentium4(3.2GHz)

Micro Computers VR5550-ATOM×5
OS Linux

Battery Lead-Acid Battery for EV

WAMOEBA-3 was developed as a platform for commu-
nication experiments. Therefore, we designed some devices
which make it easy to maintain and customize. For example,
sliding mechanisms are installed on the battery case and
power supply unit to allow easy access.It has a distributed
control system constructed of 5 microcomputers and a Dos/V
PC. The control system contains enough space capacity to
customize the robot in the future.

V. IMPLEMENTATION

Using HMHE and WAMOEBA-3, we were able to carry
out an IEC experiment in a real world. In this section, we
show how we implemented IEC into the robot.

A. Motion Generator of the Robot

The motion generation algorithm for WAMOEBA-3 was
the motor-agent (MA) model. The MA model is a distributed
control algorithm. Each actuator (or sensor) is regarded as an
autonomous agent, and each agent collects data from another
agents, and determines its own actions autonomously and
independently. Therefore, the connections between the agents
create a network in WAMOEBA’s body, and the network
topology stands on the robot’s bodily structure [12].

Each actuator moves according to the output of the follow-
ing equations.

The output of the motors is described in terms of angular
velocity, and movement of the whole body is generated by
integrating motions caused by input from the sensors, such
as the rotary encoders, bumper switches, and so on.

θ̇i =
n∑

j=0

γjiα(θj) +
m∑

k=0

γkisk + δθi (1)

Here, θ is the joint angle of actuator, and s is the input from
sensor. α is the function that determines the influence from
the other actuators.The 3rd term is for the stability of the
output of the function. α is given by the following function
which changes based on the angle of another joint.

α(θj) = exp
[
−ωj (θj − cconst)

2
]

− exp
[
−ωj (θj + cconst)

2
]

(2)

Here, cconst is the threshold, and ω is the degree of sensitivity
of θ. If the value of ω is large, the change of the θ strongly
influences the output of the function.

In this experiment, we used a very simple MA network, as
shown in Figure 4. To simplify the experiment, the images
captured using the cameras were not in use, and the joints on
the arms and ears weren’t used, either. Agents with actuation
capabilities included the eye agents, the neck agents, and the
omni-directional vehicle agent, and available sensors were
the bumper switches, the ears (microphones), and the sonars
(ultra sonic sensors). In this case, the eye agent autonomously
determined its rotation direction and speed based on the angle
of the neck joint and data from the ear sensors (microphones)
and the bumper sensors. The neck agent determines its action
based on the angles of both eye joints and action of the omni-
directional vehicle. The omni-directional vehicle determined
its translational motion on the basis of input from the bumper
switches and ultrasonic range sensors, and its rotational
motion on the basis of input from the angle of the neck joint
as well as the input from the bumper and sonar sensors.

The characteristic behaviors achieved by this network were
as follows.
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Fig. 4. Motor-agent network: blue circle and white circle represent motor-
agents and sensor-agents respectively.

• If someone made a noise (shout, clapping), the micro-
phones detected the sound’s direction. Then the eyes
and neck moved horizontally, and the vehicle moved to
follow (or escape from) him/her.

• If someone touched the bumper sensors, the sensors
detected the collision. Then the eyes moved up or down,
and the vehicle moved.

• If someone came up to the robot, the ultrasonic sensors
detected the person approaching. Then the robot moved.

B. Genetic Settings

The MA enables WAMOEBA-3 to move just reactively.
However, the direction and amount of movements are based
on human interpretation. Therefore, the connection weights
between the agents (γ in Equation 1) were encoded into genes.
The genes were encoded using numerical data, which are easy
to analyze. The dataset dimension of a gene was 32. The
probability of mutation was 0.3%. If a mutation occurred,
the value of the gene was added by a random value.

We also used multi point crossover and elitisum (the best
40% individuals were preserved and made their offsprings).

C. IEC with HMHE

Since the period of the experiment is limited by human
fatigue, we set the parameters according to the result of the
simulation so that the experiment ends in at the most 3 hours.
The population size was 30 and the experiment continued
until the 7th generations. There were 37 neurons in the SOM
network, and 1000 training cycles. The system also displayed
the best individual from the previous generation, which made
sure the learning progressed and eased an assessor’s mind.

Without HMHE, each assessor must evaluate all the genes.
Therefore, the assessor would have had to interact with 240
individuals. Since there must be almost the same genes in the
genetic pool, this is an inefficient method. Using the HMHE,
each assessor needed to evaluate only 56 individuals in total.

VI. EXPERIMENT

As described above, we’ve already made a simulation to
confirm the effectivity of the HMHE. However, we thought
that human-robot interaction in real world should be differ-
ent from simulated one. In order to confirm the difference

between the simulation and the real world, we made the
behavior acquisition experiment using IEC with HMHE. In
this section, our experimental settings are described in detail.

A. Experimental Subjects

Experimental subjects (assessors) were 6 students in our
laboratory. They were young students (21-23 years old), and
had some knowledge of computers and robots.

Before the experiments, we informed them the following.

• The robot’s name is “WAMOEBA”.
• The robot has bump sensors, ultra-sonic sensors, and

ears. The robot’s cameras and arms are not in use.
• Please tell us the total point of the robot’s behaviors

whenever you want.

They were simply informed of the robot’s abilities, and were
allowed to evaluate the robot’s behavior freely.

B. Experimental Design

Usually, communication has its own specified task or goal
(eg. escape from labyrinth). In our experiment, the task was
“play”, because communication robots like WAMOEBA-3 are
expected to entertain or may be used in psycho-therapy in
the near future [1]. Therefore, in this study, WAMOEBA-3
interacted with a human assessor to entertain him/her.

C. Environment

The experimental environment is shown in Figure 5. We
used a conference room where there were no objects or
obstacles. The assessors interacted freely with the robot, and
evaluated its behaviors. Each individual started to move from
the center of the room.
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Fig. 5. Experimental environment: (A) WAMOEBA-3. (B) human assessor.
(C) experimenter.

D. Evaluation

In this experiment, the robots’ behaviors were evaluated
using a scoring method. The assessors were able to evaluate
the robot at any time. When they wanted to input a score,
they said it to an experimenter and the experimenter inputted
the score into a laptop.

We did not supply any evaluation criteria to the assessors.
They gave their own subjective evaluation to the robot’s
behaviors.



E. Questionnaire Surveys

After the experiment, the assessors completed question-
naires to survey their impression of the experiment. Some
of the questionnaire items used are shown as follows.

• Did you feel the WAMOEBA tried to communicate with you?
• How did you feel the WAMOEBA in the early generations?
• How did you feel the WAMOEBA in the last generation?
• How did you evaluate the robot’s behaviors?
• Did your evaluation criteria change?
• Did you think the robot learnt?
• Were you satisfied with the result?

VII. RESULTS

A. Interaction

Each individual interacted with a human assessor for an
average of 3 minutes. The experiment took about 3 hours in
total.

Figure 6 shows the typical interactions between a human
assessor and WAMOEBA-3. The assessor clapped their hands
or called the robot’s name (Fig.6-a), kicked the bumper
switches on WAMOEBA-3’s vehicle (Fig.6-b), touched or
pushed WAMOEBA-3’s body or shoulders (Fig.6-c), and
posed in front of the robot (Fig.6-d).

(a) (b)

(c) (d)

Fig. 6. Interaction: An assessor clapped his hands (a), kicked the bump
switches (b), touched the robot’s shoulders (c), and posed in front of the
robot (d).

B. Acquired Motions

Figure 7 shows the population distribution of each genetic
parameter and for each generation. In the graphs, horizontal
and vertical axis respectively indicate generation and the data
of each gene. Colored regions represent the population. If
the population size of the gene has a specified data that is
large, the assessor highly evaluated the genes in the previous
generation. Therefore, we can see the acquired motions and
the assessor’s preference from the graphs.

Figure 7 a) shows the connection weight between the ear
and eye agents. If the value is positive, WAMOEBA-3 turned
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Fig. 7. Population distribution of each connection weight and generation:
Colored region represents population of genes. These are examples from one
assessor.

its eye in the direction of the sound. In this case, throughout
the experiment, the population of the genes which had a value
of 1 was the largest.

Figure 7 b) shows the connection weight between the eye
and neck agents. If the value is negative, WAMOEBA-3
turned its head in the direction of the gaze. Until the 3rd
generation, the population of 1 was the largest. However, from
the 4th generation, the population of -3 increased drastically.

In Fig. 7 c) (the connection weight between the sonar and
vehicle agents), the data of 0 was the most popular.

The connection weight between the bumper and vehicle,
as shown in Fig. 7-d), shifted from 0 to -2 in 4th generation.
This suggests that the vehicle started to move to avoid the
obstacles.

C. Fitness Values

Figure 8 shows the average and maximum fitness values.
The horizontal and vertical axis respectively indicate genera-
tions and fitness values.
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Fig. 8. Fitness Value

Both the average and maximum fitness values gradually
increased. Although the variance is not indicated in Fig. 8, it
remained constant throughout the experiment.



D. Questionnaire surveys

As for the results of the questionnaire, we obtained many
comments from the subjects.

In earlier generations, they felt that the robot did not move
dynamically, or moved wildly. On the contrary, WAMOEBA-
3 moved actively and achieved motions the assessors desired
in the last generation. They said that they scored high fitness
values when the robot moved actively and safely. Most of
the individuals which they scored high fitness values escaped
from the assessors, or turned their head to the direction of
the sound.

VIII. DISCUSSION

At first, we discuss the interaction between humans and
robot. Although the assessors were informed of the robot’s
capabilities, they interacted with the robot in a variety of
ways. The assessors sometimes touched the robot’s shoulders,
though there were no sensors on the shoulders. They even
posed in front of the robot although they knew that the
cameras are not in use in this experiment. Considering these
results, we determined that human-robot interaction has var-
ious and infinite ways, and it is quite difficult for developers
to predict because the interaction is greatly affected by the
behaviors of the robot as well as its form.

We should have prepared more sensors and actuations, so
that we could provide more space for interesting communi-
cation (redundancy).

Then, we considered the acquired behaviors and asses-
sor’s evaluation. In earlier generations, the behaviors of the
WAMOEBA-3 were small and slow because the absolute
values of the initial genes were very small. In contrast,
WAMOEBA-3 moved more dynamically in the last half of
the experiment. In the final generation, most of the acquired
motions seemed to be compliant and governable. For example,
when the assessor stood in front of WAMOEBA-3, it moved
backward.

The assessors may have placed importance on safety of
both the robot and environment. The robots that rushed at
obstacles were evaluated as low. However, these rushing
robots were sometimes highly evaluated because the motion
surprised the assessors and they scored accordingly. There-
fore, the robot should be equipped with sensors that can
distinguish human beings from other obstacles.

According to the questionnaire surveys, the assessors felt
WAMOEBA-3 had learnt motions they desired. This can
be also observed in the gradually increasing fitness value.
Therefore, we determined that IEC with HMHE is effective
for the real environment.

IX. CONCLUSION AND FUTURE WORKS

In this paper, we demonstrated that interactive evolutionary
computation (IEC) is suitable for communication learning
because fitness functions are performed by a human assessor.
Using IEC, we configured the behaviors of a communication
robot, WAMOEBA-3, and determined that IEC could be
applied to the real robot.

In this experiment, future works of this project were
also discussed. Since the human assessors interacted with
WAMOEBA-3 in a variety of ways, the WAMOEBA-3 re-
quired more sensors. The visual impression of the robot is
very important, so we should prepare all sensors in the next
experiment.

We also believe that the results will not improve as long as
the robot behaves reactively. We will develop a system that
changes WAMOEBA’s motions dynamically. In the former
researches, we proposed an endocrine model for the robot
system [9]. We think that this endocrine model could be
configured using IEC.
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