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Abstract— We’ve developed an emotional communication
robot, WAMOEBA, using behavior-based techniques. We also
proposed motor-agent (MA) model, which is an autonomous
distributed-control algorithm constructed of simple sensor-
motor coordination. Though it enables WAMOEBA to behave
in various ways, the weight of the combinations between
different motor agents is influenced by the preferences of
the developer. We usually use machine-learning algorithms to
automatically configure these parameters for communication
robots. However, this makes it difficult to define the quanti-
tative evaluation required for communication. We therefore
used the method of interactive evolutionary computation
(IEC), which can be applied to problems involving quanti-
tative evaluation. IEC does not require to define a fitness
function; this task is performed by users. But the biggest
problem with using IEC is human fatigue, which causes
insufficiency of individuals and generations for convergence
of EC. To fix this problem, we use the prediction function that
automatically calculates the fitness values of genes from some
samples that have received the human subjective evaluation.
Then we carried out the behavior acquisition experiment
using the IEC simulation system with the prediction function.
As the results of experiments, it is confirmed that diversifying
the genetic pool is an efficient way for generating a variety
of behavior.

I. INTRODUCTION

In the 21st century, robots have potential uses in many
areas, especially entertainment, healthcare, and nursing.
Robots that work around human beings must be equipped
with capability for human-robot communication. Most of
the ‘communication’ provided by robots is based on sce-
narios designed by their developers. Certainly, model-based
communication is at present the most practical and fastest
way of achieving verbal and context-sensitive communica-
tion, but it is boring for users once they are familiar with
the scenarios. Though robots may behave in various ways
to keep users interested, the number of their behaviors is
physically limited. As an autonomous generator of variety,
emotion has attracted the attention of numerous researchers
[1], but emotional models are still based on the subjective
preferences of developers.

To create a more interactive robot, we have developed
an emotional-communication robot WAMOEBA (Waseda
Artificial Mind On Emotional BAse) whose emotional
behaviors are based on evaluations of its own hardware

condition [8]. Currently, we are developing WAMOEBA-3
(see Fig.1) that is designed to behave in a greater variety
of ways than the WAMOEBA-2 series. It is a wheel-
type independence robot with inbuilt batteries and control
systems. It is 656-mm long, 825-mm wide, 1316-mm tall,
and weighs approximately 105 kg. It is equipped with
an omni-directional vehicle that is capable of moving in
any direction without actually turning at any stage. It has
two arms (6 degrees of freedom) and a head (4 degrees
of freedom). Its two eyes move independently, which is
useful for communication [9]. It has enough sensors of
sufficient sensitivity to enable it to behave in various ways.
The sensors used to acquire external information include
microphones, ultrasonic range sensors, two CCD cameras,
bumper switches, and so on. But two cameras are not used
in the current experiment shown in this paper.

Fig. 1. WAMOEBA-3

We have also proposed a motion-generation algorithm
called motor-agent (MA) model. MA model is an au-
tonomous distributed-control algorithm. Each motor is re-
garded as an autonomous agent that connects with neigh-
boring agents and collects information from sensors and
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other motors through a network in the robot. Each agent
then determines its action autonomously according to the
collected data. Though this algorithm enables WAMOEBA
to behave in various ways, the weights of the combinations
between agents are configured by the developer. Therefore,
its behavior is influenced by the developer’s preferences.

In this paper, we describe the method of using the
evolutionary computation (EC) as a basis for installing
behavior in a communication robot to automatically con-
figure the weights of the MA network. First, we point
out the problems for the human-robot communication
learning and focus attention on a problem of evaluating
the communication. As a prescription for it, we show
the interactive evolutionary computation (IEC). Next, we
describe some contrivances to acquire the variety of behav-
iors. In the communication learning system, there must be
a mutual informational and physical interaction. Therefore
we developed a simulator to investigate the interaction
between a robot and a human being. According to the
results of our experiment, we show that it is important
for the communication learning of IEC to diversify the
individuals in the genetic pool.

II. LEARNING PROBLEMS FOR

COMMUNICATION-ROBOTS

There are numerous learning algorithms, such as artifi-
cial neural networks (ANN), reinforcement learning, evolu-
tionary computation (EC), and so on. We have to select the
most appropriate algorithm for providing communication
robots with various behaviors. We decided on EC because
it is suitable for exploring a large search area, and can
generate a number of possible solutions. An additional
advantage of using EC is that it does not require models
of the system and the environment.

When EC is used to optimize the behavior of a
communication-robot, it is first necessary to define the
fitness function. However, it is difficult to evaluate commu-
nicative behavior quantitatively, rather than qualitatively.
No matter which learning method is selected, it is still
necessary to explicitly define a method for evaluating
communication.

Two methods have already been proposed to fix this
problem. One involves using an evaluation model [2], and
the other is an interactive learning system. The former
method is based on building an evaluation model of a
human being from trends shown by subjects. However,
the phenomenon of communication is too difficult to build
an explicit model of subjective human evaluation because
there are mutual informational and physical interactions
between people in communicative situations. The latter
method incorporates a human being into the learning sys-
tem instead of an evaluation function. This approach avoids
the problem of complexity. Therefore, we decided to use
interactive evolutionary computation (IEC), which com-
bines evolutionary computation and an interactive learning
system [5].

III. INTERACTIVE EVOLUTIONARY COMPUTATION

In conventional EC, each individual is evaluated using a
given fitness function. IEC is an evolutionary computation;
its fitness function is provided by users (see Fig. 2). It
therefore enables EC techniques to be applied to problems
of subjective optimization without an explicit model of
human subjective evaluation. IEC has previously been
applied to aesthetic areas, such as art, design, and music.
In these areas, fitness functions cannot always be defined
explicitly. With IEC, however, it is unnecessary to define
them.

Human
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Evaluation

Framework of EC

• SELECTION
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Gene Pool

Human-Interface

Fig. 2. Framework of IEC

IEC has also been applied to optimizing robot behavior.
For example, in a study entitled “A Children’s Game” [4],
a robot controller was developed using an ANN; the con-
nection weights in this ANN were developed according to
children’s preferences for robot locomotion. By repeating
the selected locomotion on a simulator screen, IEC was
able to generate the behavior that the children preferred.
This study was aimed at developing a robot controller
without programming. IEC has also been used to optimize
the emotional expression of autonomous robots. Assessors
observed the different movements of autonomous robots
and chose the movements that seemingly mimicked the
emotions, such as happiness, anger or sadness, that they
were looking for [10].

Both of these studies used IEC to advantage in optimiz-
ing robot behavior. Our aim however, is to develop more
communicative and interactive behavior. Therefore, our
experiment required physical and informational interaction
between human beings and robots.

IV. INTRODUCTION OF IEC INTO HUMAN-ROBOT

COMMUNICATION

A. Motor-Agent Network

We used MA model as the motion-generation algorithm
for an robot. In this experiment, we used a very simple MA
network, as shown in Fig. 3. Agents with actuation capa-
bilities include the eye agents, neck agents, and the omni-
directional vehicle agent. Each agent determines its own
actions autonomously and independently. The eye agent
determines its rotation direction and speed autonomously
according to the angle of the neck joint and data from
the ear sensors. The neck agent determines its action
according to the angles of both eye joints and the action of



the omni-directional vehicle. The omni-directional vehicle
determines its translational motion on the basis of input
from the bumper switches and ultrasonic range sensors,
and its rotational motion on the basis of input from the
angle of the neck joint as well as the input of the sensors.

Ear

Bumper

Sonar

Vehicle

Neck

Eye

Ear

Eye

Bumper

Sonar

Fig. 3. Motor-Agent network

The output of the motors is described in terms of angular
velocity, and movement of the whole body is generated by
integrating the reflection motions caused by sensor input.

θ̇ �
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Here, α is a weight coefficient that shows the ratio from
which the reflection motion is selected. α is given by the
following function which changes according to an angle of
another joint.
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θ is an angle of joint, and cconst is a threshold. γ is the
degree of influence of θ , and ω is the degree of sensitivity
of θ . If the value of ω is large, the change in the sensor
input influences α sensitively. β is also defined according
to the sensor signal.

βi�s� � ∑
i

γi� si (3)

s is the parameter changed according to the sensor inputs
(e.g. the bumper switched).

B. Gene Expression

The γ values in Equation 2 and 3 are encoded to genes
represented by numerical data, which are easy to analyze.
Each connection in the motor-agent network has γ, and the
dimension of datasets of a gene is 28. The probability of
mutation is 0.5% for each element in datasets of a gene.
If a mutation occurs in an element, it is updated by a
random number generator. If the parent genes are close
to each other, the probability of mutation increases to 50%
to ensure that the genetic pool contains a variety of genes.

C. Evaluation Prediction

The biggest problem with applying IEC is human fa-
tigue. Since assessors cooperate with a computer to evalu-
ate individuals, the IEC process spends huge length of time.
To minimize human fatigue, we need to reduce the number
of individuals and generations. This results in poorer and
slower EC convergence.

To solve this problem, we used a method for predicting
the fitness values of genes [6].With this method, the asses-
sor tests only some individuals that are selected from the
genetic pool. And then the system predicts fitness values
for the other genes. Fitness values of them are predicted
on the basis of the Euclidian distance from the datasets
of genes that an assessor gives his/her subjective fitness
values before.

In usual prediction methods, the individuals evaluated
by an assessor are selected at random. However, as a
more efficient method to select individuals, we used a self-
organization map (SOM) [3]. The SOM is an algorithm that
is suitable for analyzing large multi-dimensional datasets.
In SOM, similar vectors are placed close to each other and
dissimilar vectors are placed further from each other.

The individuals are selected using the SOM as follows:
first, the SOM is trained by the datasets of genes in the
genetic pool (see Fig.4(a)). The number of neurons of
SOM network is 37, and of training cycles is 1000. Next,
seven genes are selected; each selected gene has the best
matching dataset with each of seven neurons placed at the
position shown in Fig.4(b). In this way, we can select the
individuals that have distant datasets of genes from each
other, which is efficient for the prediction system. Using
this prediction system enables to increase the number of
individuals in the genetic pool to 50.

The system also displays the best individual from the
previous generation, which makes sure the progression of
learning and eases an assessor’s mind.

Genetic Pool Genetic Pool

Self-Organizing Map

(a)Training Period (b)Selecting Period

Fig. 4. Positions of selected genes on SOM

Our proposed algorithm is shown in Figure 5. The
newest genes are analyzed using the SOM algorithm.
Then, selected genes are translated into individuals (motor-
agent network) and interact with assessors, who then
evaluat them. Genes that are not selected are automatically
evaluated by the prediction system. When all the genes



have been evaluated both automatically and manually, the
EC applies genetic operators (selection, crossover, and
mutation) to the gene pool and renewed the pool.

If all genes are
evaluated
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Fig. 5. Proposed Algorithm

V. EXPERIMENT

A. Interaction Simulator

We developed a simulator of WAMOEBA-3 in prelim-
inary experiments to investigate the interaction between
robots and human beings (see Fig. 6). In this paper, we
discuss the problems, and techniques required to apply IEC
to communication robots.

Fig. 6. Interaction simulator

In this experiment, two robots placed in a simulated
environment interacted with each other. One was controlled
by an assessor, and the other by a program (MA). To con-
trol the simulated robot, the assessor used a joystick with
force-feedback capability. This enabled bilateral physical
interaction.

The main interactions between the human-controlled
robot and a program-controlled robot were as follows:

1) When physical contact occurs between a human-
controlled robot and a program-controlled one in
a simulated environment, the simulator generates
force feedback effects for the assessor and sends
information on the collision to the bumper agents
of the MA. Then the bumper agents influence the
action of the vehicle agent.

2) When the human-controlled robot makes sounds
(when the assessor presses a button on the joystick),

the ear sensors (microphones) capture the sound and
the ear agents influence the eye motor agents.

3) When the ultrasonic range sensors of the program-
controlled robot capture the human-controlled robot
or the walls of environment, the sonar agents influ-
ence the vehicle agents.

4) The program-controlled robot stops moving when
its battery level is too low. The human-controlled
robot is equipped with an energy-charging gun which
works by pressing a button on the joystick. If the
human-controlled robot with the gun is close enough
to the program-controlled one, it can recharge its
battery also.

We used this experiment to examine the following aspects
of applying IEC to the acquisition of various behaviors by
communication robots.

1) Interaction Task
2) Presentation of Individuals
3) Evaluation
4) Dealing with the disadvantages of IEC

B. Interaction Task

Usually, a communication has its own goal (task). As-
sessors can evaluate how the task was achieved. In this
experiment, however, since we wanted to acquire a variety
of behaviors, we did not prepare communication tasks in
advance.

Fig. 7. Interaction environment

The environment is shown in Fig. 7. There are no
objects, obstacles, or textures that could influence the as-
sessor. There are only the two robots. The assessors interact
freely with the program-controlled robot, and evaluate its
behavior.

C. Presentation of Individuals

The IEC is usually applied to aesthetic areas such as
design or art. In such cases, when an examinee evaluates
individuals in the genetic pool, the static images of in-
dividuals are represented on the CRT screen at the same
time. On the other hand, we use the IEC to acquire the
behavior of the communication-robot. The communication
is dynamic phenomenon that has duration of time, and it
is spatially impossible to display. Therefore we have to
display one by one. The examinee interacts with only one
individual. On the simulator screen, the vision captured by
the camera of the human-controlled robot is displayed, and
an examinee evaluates the behavior of the robot.



D. Evaluation

In normal IEC, several individuals are shown on the
screen at the same time, and the assessor then evaluates
individuals by selecting or ranking them. In this experi-
ment, robot behavior was evaluated using a scoring method
because the assessors evaluated individuals one by one.

We did not supply any adjectives for the evaluation dia-
logue that took place at the end of each interaction because
this would have provided the assessors with evaluation
criteria that were influenced by the developer. Assessors
were simply informed of the abilities of the robot and
allowed to evaluate the behavior freely.

E. Behavior Acquisition Experiment with IEC

First, we made the behavior acquisition experiment using
the IEC with the prediction function described in the sec-
tion IV-C. It was carried out using the simulator described
in the section V-A. We also carried out an experiment
without using the prediction system. In the non-prediction
system, IEC has only 7 individuals in the genetic pool.

F. Reevaluation Experiment with Paired Comparisons

After the experiment in using the IEC with the prediction
function, we did a further experiment to check the success-
fulness of IEC learning. The experiment was carried out
as follows:

1) Five individuals who had experienced learning were
selected from the genetic pool.

2) The assessors evaluated the individuals using a paired
comparisons method.

3) Priorities were calculated from the results of the
comparisons.

Each assessor reevaluated the individuals in the genetic
pool which was trained by him/her self. The paired com-
parisons method is one of the most famous decision making
methods. The decision maker makes a comparison between
two samples from the alternatives, and then he/she rates the
priority of one of two. This process is carried out for each
of the possible combinations. Finally, the priorities of the
alternatives are calculated from the results of comparisons.

The paired comparisons method is expected to produce
more accurate evaluations than the scoring method used
in the first experiment. However it increases the human
fatigue because the required number of the interactions and
evaluations is as large as the number of the combinations
between individuals that is to be evaluated. Therefore the
number of individuals was more severely restricted and
got down to five. The priorities were calculated from the
geometric average of the judgments made by the assessor.

VI. RESULT

A. Behavior Acquisition Experiment

The behavior acquisition experiments took about 90
minutes on average. One evaluation of an individual took
about 90 seconds (The assessors were five members of our
laboratory staff).

Figure 8 shows the standard deviation of dataset of the
genes. The vertical axis indicates the standard deviation
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and the horizontal axis indicates the generation. The line
graph of ‘non-prediction’ represents the standard deviation
of the IEC system without the prediction function, and the
line graph of ‘prediction’ represents that of the IEC system
with the prediction function. The standard deviation of the
genes in the non-prediction system drops, but that of the
prediction system remains high. This shows that variation
in the genetic pool is maintained at a constant level with
the prediction system.
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Figure 9 shows an evolution process of experiments.
Circle plots represent maximum fitness values in the pop-
ulation of each generations, and square plots represent
population averages. In the early generations in the plots
of the non-prediction system, the fitness values tended to
increase, but from the fifth generation, the fitness value
tended to drop.

In contrast, the values in the prediction system remained
almost at an even level or increased.

B. Reevaluation Experiment

Figure 10 shows a graph of the priority values for indi-
viduals. The vertical axis indicates the priority value, and
the horizontal one represents the order in which selected
individuals were generated. The line graph represents the
average priority; the variance in priority is also shown.

In early generations, the priorities of individuals in-
creased. In later generations, the average priority stayed
the same, but its variance increased.
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VII. DISCUSSION

In the early generations, though we had not set a task for
the interaction or provided criteria for the evaluation, the
assessors were able to interact with the robots and evaluate
them. The learning capability of IEC was demonstrated in
the reevaluation experiment. With the later generations, it
was difficult to maintain or increase the fitness values.

Values dropped because the assessors changed their
criteria for the evaluation and interaction due to their
boring. When the criteria were changed, an assessor ob-
served different aspects of the robots, and robots that had
received favorable evaluations in previous generations were
evaluated more critically. The change in the criteria was a
result of the unstructured format of this experiment. We
did not provide standards for the evaluation or a purpose
for the interaction. In the reevaluation experiment, the
increment in the variance of priorities might have been
due to the changed criteria. In the later generations in the
behavior acquisition experiment, the assessors evaluated
the robots differently. For example, in the early generations,
an assessor evaluated individuals looking at the movement
of whole body vaguely, and in the latter generations, he/she
paid attention to the head movement. This was why it
was difficult to duplicate the evaluation in the reevaluation
experiment.

However, using the prediction system we enabled the
fitness values to be maintained at a constant level or to be
increased. This system was effective in maintaining variety
in the genetic pool. Even if the criteria was changed, the
genetic pool contained various individuals that could pro-
duce individuals that could adapt to changes in interactions
and evaluations. Therefore, even though the fitness values
dropped, the genetic pool was able to adapt to the changed
criteria and the fitness values recovered.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we showed the property of using IEC to
acquire various behaviors of communication-robot. And we
applied IEC to configure the weights between agents in the
WAMOEBA-3 MA network. Then we discussed the con-
ditions to diversify the generated individuals (behaviors).
Though we did not prepare the criteria for interactions and
evaluations, IEC was capable of learning the behavior that
the assessors preferred. In the latter half of the experiment,
though it was difficult to keep increasing the fitness values

because of changes to the criteria, the IEC prediction
system effectively overcame this difficulty and increased
the number of individuals in the genetic pool. This was why
it is important for acquisition of various communicative
behaviors to keep the variety of genetic pool.

We have two future works. First, to reduce human
fatigue, we will try to refine the system. For example,
to reduce assessors’ effort in having to mentally compare
current and past behavior, the system will enable assessors
to replay the behavior of elite individuals whenever they
choose.

Secondly, we will introduce greater diversity and com-
plexity into the motion-generation function (MA) and
emotional-behavior generator (endocrine system) we have
already proposed [8].

We also need to do further work on the techniques
required to apply IEC in the real world.
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