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Abstract: Our goal is to create a user-adaptive communication-robot. We are developing a system for
evaluating human-robot interactions. Although such evaluation is indispensable for learning algorithms,
users’ preferences are too difficult to model because they are subjective. In this study, we used the
interactive evolutionary computation (IEC) to configure the value system of a learning communication-
robot. The IEC is a genetic algorithm whose fitness function is performed by the user. In our experiment,
we encoded the values of sensors (reward or punishment) into genes, and subjects interacted with the
learning robot. Through the interaction, the subjects evaluated the robot by touching its sensors, and
the robot learned appropriate combinations between input and output. Afterward, the subjects gave their
scores to the experimenter, and the scores were regarded as the fitness values of the corresponding genes.
These sequences were continued until the 4 generation, and then the subjects compared three of their
best genes and two of the experimenter’s. We found that the user-adaptive value system is suitable for
the communication-robot.

1. INTRODUCTION

Our goal is to create a robot, which can communicate with peo-
ple in various ways. We think that human-robot communication
is essential not only for giving commands to the robot, but also
for entertaining and relaxing its user, so this communication
should have variety and flexibility. However, most robots can
only communicate using the scenarios designed by their devel-
opers. Although scenario-based communication is practical as
a type of context-sensitive communication, like speech, it lacks
variety and flexibility.

On the contrary, we are interested in a behavior-based commu-
nication. From this aspect, various complex behaviors can be
generated through mutual interaction between a robot and its
surroundings. Although a behavior-based technique is not yet
suitable for context-sensitive communication, such a technique
would have much more variety and flexibility. However, even
though entire scenarios are not described in the behavior-based
communication, the robot’s behaviors, which correspond to the
specific sensory input, are defined by the designer a priori.
Ideally, the robot’s behaviors should be configured not by its
designer but by the user to achieve user-friendly human-robot
communication. Because most users do not have programming
skills, the robot should be able to adapt to the users’ prefer-
ences.

Machine-learning algorithms, such as a neural network, re-
inforcement learning, and genetic algorithms, are applied to
achieve this behavior. A learning algorithm enables a robot to
change its behaviors through interaction. However, we think
that the evaluation is a significant problem for such a commu-
nication learning method. In such cases, psychological insight
can be applied to address problems associated with subjectivity

in human evaluation. Ishiguro et al. conducted a series of behav-
ior adapatation experiments by using policy gradient reinforce-
ment learning [13]. In their experiments, they hypothesized that
a person’s gaze, motion speed, and the distance between the
person and the robot indicate how well the interaction is going.
Their experiments were very successful because they designed
the evaluation system carefully by considering psychological
insight and the initial experimental results. However, human
evaluation and interaction are subjective, so it is quite difficult
to build a human evaluation model suitable to all users.

To address this problem, we used interactive evolutionary com-
putatiaon (IEC) [5]. The IEC is an evolutionary computation,
such as a genetic algorithm, but the fitness function is per-
formed by the user, so we do not have to model the user’s
preferences, and we can use a machine-learning technique to
solve the problems associated with the subjectivity. We have
previously used IEC in a human-robot communication system
[12]. In our previous experiments, the reactive controller of a
communication-robot was configured with IEC by repeated in-
teraction and evaluation. Although IEC can personalize a user’s
robot without intervention from the designer, this requires a lot
of time, and the user must continue inputting fitness values as
the robot continues learning.

We incorporated an individual learning function into the IEC-
based communication system. The robot learns appropriate
combinations of inputs from its user and outputs (its behaviors)
after it is repeatedly given a reward (or a punishment) by its
user, and IEC configures the value system, which assesses
whether the behavior is successful by itself. In the next section,
our proposed algorithm is described in detail. In section 3, the
experimental settings are shown. In section 4, we show the
experimental results, and the effectiveness of this algorithm is



discussed. Finally, we summarize this paper and describe our
future work.

2. OUR PROPOSED ALGORITHM

In this study, two types of machine-learning techniques are used
at the same time. One is the individual learning function, and
the other is IEC. We describe each of the techniques in more
detail, and then we show our proposed system.

2.1 Individually Learning Function

Figure 1 shows the overview of the learning function for our
communication-robot. The system is constructed of two blocks,
one is the motion-learning function, and the other is the value
system.

Fig. 1. Learning Function

If we regard a human-robot communication as an optimization
problem, it would have a multi-peaked structure. Various be-
haviors can gratify the user, so the most appropriate motion can-
not be defined. Therefore, the communication-learning function
should be an unsupervised learning function, like reinforece-
ment learning or a genetic alogrithm. A lot of researchers are
developing such learning algorithms and some use them for
human-robot interaction [11] [13] [15].

We are developing the value system, that is, a system for as-
sessing whether the behaviors are successful. Many of these
researchers have recently become interested in imitation learn-
ing [10] [14]. It resembles the way a mother teaches her child.
Although this method of learning might be very plausible, we
think that if a self-organizing learning system, which involves a
self-supervised learning function, is installed into the robot, the
robot can learn communicative motions through more natural
communication.

To develop the value system for the communication-robot, we
used the IEC that can deal with the problems associated with
the subjectivity of people’s preferences.

2.2 Interactive Evolutionary Computation

Interactive evolutionary computation (IEC) is an evolutionary
computation (EC) whose fitness function is provided by human
assessors. IEC, therefore, makes it possible to apply EC mini-
mize the amount of subjectivity in people’s preferences [5]. IEC
has previously been applied to aesthetic areas, such as art and
music. It has also been applied to robots [4].

We aim to use IEC for human-robot communication, because
we believe that communication can only be learnt only by
mutual interaction between a person and a robot, so our system
consists of both of them. In our experiment, subjects interacted
with a robot and simultaneously evaluated its response.

Our proposed algorithm is shown in Figure 2. First, the genetic
pool is generated and the genes are initialized at random (1).
Then, one gene is picked and translated into the parameters of
the robot’s value system (2). Next, the robot interacts with its
user (3). Through the interaction, the value system generates
the reward (or punishment) from the sensory inputs, and the
motion-learning function estimates more suitable behaviors for
communication (See Fig. 1). After the interaction, the user
scores the robot, which is the fitness value of the corresponding
gene (4). This sequence is continued until all genes are manu-
ally evaluated (5). Finally, genetic operators are applied to the
genetic pool (6), and more appropriate genes are generated (7).

Fig. 2. Our Proposed Algorithm

3. EXPERIMENTAL SETTINGS

3.1 WAMOEBA-3

Our IEC experiment took a considerable amount of time be-
cause each subject evaluated a number of genes. Therefore, the
robot must have a variety of behaviors to maintain the subject’s
interest. It must be harmless to people and be easy to maintain
and customize. The robot must also be able to move without ca-
bles for the power supply or the control because cables prevent
easy interaction with humans.

We used a communication-robot called Waseda Artificial Mind
On Emotion BAse (WAMOEBA-3), as shown in Figure 3.
WAMOEBA-3 is an independent, wheeled robot with built-in
batteries and a PC. This robot was developed as a platform
for communication experiments. Its upper body is analogous
to a human one, and its size is about the average size of
Japanese children: 825 mm wide, 1316 mm tall. WAMOEBA-
3 weighs approximately 105 kg. It is equipped with two arms
(7 degrees of freedom) and a head (8 degrees of freedom).
Each joint has a torque sensor to measure the stress on the
arm and the head. WAMOEBA-3 is also equipped with an
omni-directional vehicle for locomotion, which can move in
any direction without actually turning at any stage. This is
advantageous for both the variety of its behaviors and for the
safety of the subjects.



Fig. 3. WAMOEBA-3

WAMOEBA-3 also has a lot of sensors. It has shoulder covers
into which 6-axis force sensors are installed to detect touches
on the shoulders. Moreover, we installed pressure sensors into
the top of its head and into both its hands. Its head has two CCD
cameras and two microphones. Each camera can independently
move vertically and horizontally, and each ear can rotate hor-
izontally, which enable the robot to indicate the direction of
its attention. The vehicle has eight bumper, three infrared, and
eight ultrasonic sensors. Table 1 lists the specifications of the
WAMOEBA-3 in more detail.

Table 1. Specifications of WAMOEBA-3

Dimensions mm 1316 (H) x 825 (L) x 656 (W)
Total Weight kg 105
Max speed km/h 3.5

Payload kgf/hand 5.0
Drive Time hours 1.5
Drive Camera DOF 1+1 x 2=3

Member Ear DOF 2
Neck DOF 3

Vehicle DOF 3
Arm DOF 6 x 2=12
Hand DOF 1 x 2=2

Outside Vision CCD Color camera x 2
Sensors (x10 Optical zoom,

x4 Digital zoom)
Sound input Microphone x 2

(Directional hearing,
Voice recognition)

Sound output Speaker (Voice synthesis)
Distance Ultrasonic sensor x 8

Human-like body Pyroelectric sensor x 3
Top of head Pressure sensor x 3
Joint stress Torque sensor x 14
Shoulder 6-Axis force sensor x 2

Hand Pressure sensor x 2
Collision Bumper switch x 8

Structural material Extra super duralumin
Titanium alloy (Ti-6Al-4V)

Aluminum (52S)
CPU Pentium 4 (3.2 GHz)

Microcomputers VR5550-ATOM×5
OS Linux

Battery Lead-Acid Battery for EV

3.2 Behavior Learning Function

We implemented a very simple learning algorithm that is a re-
inforcement learning algorithm in which the policy is changed
to maximize the reward given by the user after the interaction.

In this experiment, we prepared a simple table like Table 2.
The table lists the values of behaviors corresponding to state
conditions. First, the state condition, s, which is closest to the
current condition of the robot, is selected from the table. Next,
the behavior, b which has the largest value in the s row, is
selected by priority. In this study, the best behavior is selected
for a proportion, 1−ε (epsilon-greedy strategy). After that, the
selected behavior is exhibited by the robot, and the user gives a
reward (or a punishment) to the robot. Then, the behavior table
is updated based on the reward. In this study, the value of the
selected cell is updated by the folowing function:

Qt+1 = Qt +α(R−Qt ) (1)

Here, Q is the value of the behavior, R is the reward (or the
punishment), and α is the learning weight.

Table 2. Behavior Generation Table

b1 b2 b3 b4

s1 0.1 0.3 0.1 0.2
s2 0.0 0.1 0.5 0.0
s3 0.3 0.2 0.0 0.6
s4 0.0 0.0 0.0 0.1

bx: behavior
sx: state condition

3.3 State Conditions, Behaviors, & Rewarding/Punishing Method

In this experiment, we tested the adaptive value system of the
learning function, so we had to determine whether the subjects
could evaluate the teachability of the robot. On the basis of the
preliminary experiments, we found that the subjects could not
understand what should have been evaluated in a short amount
of time, if the variety of the behaviors was too big. Therefore,
we carefully defined six conditions and seven behaviors, as
shown in Table 3. They are sufficiently clear for the subjects
to imagine the appropreate combination of behaviors and state
conditions.

Table 3. Behaviors and Conditions

Conditions Sound from right
Sound from left
Camera detects something moving
Touch on shoulder
Touch on bumper
No input, or other input

Behaviors Ears turn right
Ears turn to left
Neck turns to right
Neck turns to left
Eyes look down
Hands extend to subject
Speaker makes sound “WAMOEBA”

We also carefully defined six methods for rewarding WAMOEBA
as follows:

• Touch head
• Touch right shoulder



• Touch left shoulder
• Touch right hand
• Touch left hand
• Push bumper switches

In our value system, the reward (or the punishment) was given
to the behavior learning function,when the sensors that corre-
spond to the rewarding method described above were stimu-
lated.

In this experiment, the subject could confirm whether the sensor
he/she stimulated was a reward or a punishment by looking at
the display mounted on the chest of the robot. If the sensor was
a reward, the display was yellow, and if it was a punishment,
the display was red.

These reward methods were too simple to satisfy the users, but
they had sufficient variation to determine the diversity of the
users’ preferences, as we show in section 5.

3.4 Genetic Settings

In this study, the reward/punishment values of the sensors
are encoded into genes. Each gene has six elements, which
correspond to the value of the sensors. Each element can be
1, 0, or -1 (A negative value means that the corresponding
sensor is a punishment.). The probability of mutation is 10%,
and if a mutation occurs, the element is increased or decreased
randomly.

On the basis of previous IEC experiments [11] [12], we found
that it is preferable that the experiment requires the subjects
to concentrate for less than 3 hours at a time. Therefore, we
used a population size of 10, and the IEC continued until the 4
generation.

3.5 Environment

The experiment was carried out in a small space in our lab-
oratory (Figure 4). The robot (Figure 4a-A) and the subject
(Figure 4a-B) interacted with each other until he/she wanted
to stop. After that, the subject evaluated the teachability of the
robot, and gave a score (the fitness value of the gene) to the
experimenter (Figure 4a-C).

(a) (b)

Fig. 4. Experimental overview (a) and photograph of actual
experiment (b)

3.6 Comparison of Created Robots

After the IEC experiment, the three best robots were selected
and evaluated again to compare with two sample robots. We
created the samples through the same IEC process.. Table 4
shows the genes of the samples. Touching them on the head

Table 4. Value System of Our Prepared Robot

Head Shoulder Shoulder Hand Hand Bumper
Right Left Right Left

Sample 1 0 1 0 0 0 -1
Sample 2 1 0 0 0 0 -1

and on the right shoulder were rewards, and touching them on
the bumpers was a punishment.

They are very simple and intuitive value systems that we can
easily imagine from the appearance of the robot, and we could
observe them even during the subjects’ IEC experiments.

4. RESULTS

In this study, we had two stages of the experiments. First, we
used IEC to configure the value system of the individual learn-
ing function. Then, three of the three best optimized robots were
compared with the two sample robots we prepared. Eleven sub-
jects participated in our experiment. Nine of them are university
students, and one of them is a woman. Five of them major in a
scientific area, and three have programming experience.

4.1 IEC Experiment

The average experiment duration was 210 minutes.

Figure 5 shows the average fitness values of all subjects’ ex-
periments. The vertical axis indicates the fitness values and the
horizontal axis indicates the generation. Although the fitness
values increased slightly throughout the experiment, the diver-
sity of the fitness values remained high.

Fig. 5. Fitness Values

Table 5 shows the correlation between the fitness values and
the values for genes of each subject in the last generation. A red
cellmeans positive a correlation, and a blue cel means a negative
correlation. A positive correlation indicates that the subjects
gave high scores when touching the corresponding sensors was
for a reward.

Subjects A, B, C, D, and E might have thought that touching
the head should be a reward and touching the shoulder should
be a punishment. Subject F prefered that toughing the shoulder
should be a reward. On the contrary, subject K thought that
touching the robot’s head should be a punishment, and subjects
G and H gave high scores to the robot whose right hand was
touched as a reward.



Table 5. Correlation between Fitness (3 Genera-
tion) and Genes

Subject Head Shoulder Shoulder Hand Hand Bumper
Right Left Right Left

A 0.92 -0.02 -0.61 -0.61 0.08 0.14
B 0.58 0.88 -0.92 -0.48 0.16 —
C 0.74 0.34 -0.34 0.00 0.27 -0.55
D 0.42 0.00 -0.44 -0.18 — -0.84
E 0.36 0.05 -0.41 — — 0.28
F 0.68 -0.10 0.26 0.06 — -0.38
G 0.15 0.89 — 0.36 0.19 —
H — 0.61 — 0.41 -0.35 0.02
I 0.03 0.06 0.29 0.49 -0.22 —
J -0.12 0.08 — -0.31 -0.39 -0.65
K -0.49 0.78 0.48 0.03 0.40 -0.31

NOTE: A blank cell means that the correlation value cannot be calculated
because all of the genes had the same values.

4.2 Comparison of Created Robots

Figure 6 shows the fitness values from the further experiments.
IEC was performed on the best three optimized robots, and
the sample robots contain the genes we prepared. We observed
significant differences among IEC (1), and sample 1 (P < 0.01),
and sample 2 (P < 0.05).

Fig. 6. Comparison of Experimental Fitness Values

5. DISCUSSION

For the IEC experiment, the amount of increase in the fit-
ness values was insignificant. However, the amount of increase
in the fitness value does not always mean that the learning
is successful. Subjects evaluated the robots one-by-one, but
they unconsciously compared the robots. Moreover, they would
compare the robots during the span of one generation because
we allowed the subjects to have a rest interval between genera-
tions. Therefore, mainatining a sufficient amount of diversity in
the genetic pool is the most importantcriterion for evolutionary
communication learning. If the amount of diversity is small, the
genetic operator cannot work appropriately because estimating
the successful gene pattern (scheme) becomes quite difficult.

In this study, the amount of diversity in the fitness values
remained high throughout the experiment (See Figure 5), so we
believe the subjects’ evaluations of the robots were successful.

Next we analyzed the relation between the fitness values and
the values of the genes. We observed slight tendencies, as we

expected, in that touching the robot on the head was positively
evaluated (reward), and touching the bumper switches of the
robot was negatively evaluated (punishment). In spite of the
small dimension of genes, however, at the same time we also
observed variations in the results of the adaptation of the robot
to each subject.

The expected results are easily obtained based on the robot’s
appearance. Because WAMOEBA-3 has a human-like upper
body (See Fig. 3), most of the subjects gave high scores for
the robot, which has the gene like that listed in Table 4 (Head =
reward, bumper = punishment). If we had designed the robot’s
appearance more carefully, we could have obliged the users to
interact with the robot in ways we expected. On the contrary,
the shoulders and the hands had various values of genes. They
were the difficult positions to design in the value system, and
IEC is suitable for building value systems especially with these
redundant sensors, which can reflect the user’s own preferences.

We could confirm the effectiveness of the user-adaptive value
system using IEC with a questionnaire survey which we car-
ried out during the comparison experiments. The questionnaire
items and the results of the factor analysis are shown in Table
6. As a result, three factors were obtained:

(1) Friendliness, Safety
(2) Understandableness, Interestingness
(3) Distinctiveness, Abiological

We also calculated the factor scores of the robot, which subjects
trained by themselves (IEC), and ones we prepared (samples 1
and 2) (Table 7).

We observed a remarkable difference between IEC and the
samples in factor 1 (Friendliness, Safety). Conversely, the dif-
ference in factor 2 (understandableness) was small. This means
that, the IEC was not effective for gaining the understandable-
ness of the robot’s behaviors, but it made more optimized robots
for the users, which engages the unique friendship between a
robot and a person.

Table 6. Factor Loading

Adjective Factor 1 Factor 2 Factor 3
Gentle 0.89 0.17 0.22
Familiar 0.84 0.42 0.17
Friendly 0.83 0.41 0.25
Communicating easily 0.83 0.47 0.12
Affable 0.82 0.29 0.25
Cordial 0.82 0.32 0.25
Warm 0.81 0.19 0.38
Amusing 0.79 0.51 0.18
Favorable 0.72 0.55 0.20
Intelligent 0.65 0.62 0.21
Safe 0.63 0.13 -0.01
Active 0.36 0.77 0.37
Understandable 0.47 0.67 0.29
Interesting 0.48 0.67 0.38
Funny 0.52 0.65 0.44
Abiological 0.12 0.40 0.88
Natural 0.23 0.31 0.86
Distinctive 0.25 0.52 0.69
Complicated 0.07 0.00 0.47

6. CONCLUSION AND FUTURE WORK

In this paper, we developed a user-adaptive communication
system, which learns both individually and evolutionarily. We



Table 7. Factor Scores

Factor 1 Factor 2 Factor 3
(Friendliness) (Interestingness) (Distinctiveness)

IEC 0.53 0.00 0.10
Sample 1 -0.37 0.11 -0.20
Sample 2 -0.18 -0.23 -0.29

used a very simple look-up table algorithm as an individual
learning function. The behavior values are updated based on
the reward/punishment generated by the value system. To de-
velop the value system, we used interactive evolutionary com-
putation (IEC). We carried out the experiment using a real
robot named WAMOEBA-3, and we observed significant dif-
ferences between the robots that subjects trained through IEC
by themselves and the robots we developed. From an analysis
of questionnaires, we found that IEC can improve the degree of
friendliness of the robot as perceived by the users, by exploiting
redundant degrees of freedom, which are difficult to design
intuitively.

In our future work, we will use a more sophisticated motion
generator. In this experiment, we defined the robot’s behaviors
a priori, but the behaviors also should be acquired through
interaction with humans. Because the current look-up table
algorithm cannot be applied to the continuous values, we think
the neural network or actor-critic model will be promising.
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