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Abstract: Our godl is to create the robot system which interacts with human users keeping their interest during a
long period. We focus on the Interactive Evolutionary Computation (IEC) technique to achieve this goal. Although the
|EC enables users to design various systems which reflect their subjective preferences, it forces users to evaluate a huge
number of individuals in the genetic pool during the evolution period. To solve this problem, we propose a refined IEC
technique, named Human-Machine Hybrid Evaluation (HMHE), which sel ects the representative genesfor user evaluation
and estimates the evaluation results of the other genes. It can increase the population size without increasing the users
evaluation processes. We carried out some simulations where a humanoid robot with our method interacted with a user.
The experimental results demonstrated that the HMHE could continue to generate the various robot behaviors by adapting

to the transition of user’s subjective preferences.
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1. INTRODUCTION

In recent years, robots are expected to contribute to our
lives as helpful staffs. They offer potential usesin many
areas, especially in entertainment, healthcare, housekeep-
ing and nursing.Those robots that work around people
should be capable of communication with people not only
to receive their commands but also to entertain or to take
care of them [1]. However, most of the human-robot
communication is based on scenarios (models) designed
by developers. Though at present, the model-based com-
munication is certainly the most practical and fastest way
to achieve verbal and context-sensitive communication,
the robot becomes quite boring, once users take notices
of the scenarios.

On the other hand, to create more flexible and adap-
tive robot, the behavior based technique is focused on by
many researchers [2]. In the technique, the behaviors of
the robot are generated through the mutual interaction be-
tween the robot and the environment including human be-
ings. Nevertheless, those behaviors are much influenced
by the developers' own preference, so they sometimes ap-
pear questionable for users.

In this case, it is preferable for the robot to be read-
justable, but the users usually do not have any program-
ming techniques. Therefore the robots should have a ma-
chine learning function to configure the behavior auto-
matically, such asartificial neural network, reinforcement
learning, genetic algorithm.Moreover, the learning func-
tion generates the diversity of behaviors, which prevents
users from boredom. So our goal is to create a commu-
nication robot which can adapt to the users preference in
order to keep the users interested in the robot for along
period.

However, in order to learn the preference of a user, it
is indispensable to evaluate how successful the interac-
tion between the user and the robot was. Ishiguro et al.

conducted some experiments of behavior adaptation us-
ing Policy Gradient Reinforcement Learning [3]. In this
experiment, they hypothised that a human’s gaze, motion
speed, and distance between a human and a robot indi-
cate how well the interaction was. However, the human's
evaluation and interaction are quite complicated and eas-
ily varied, so the subjects sometimes behaved in the ways
the experimenters did not expected.

To address the problem, in this paper, we propose a
technique of applying the Interactive Evolutionary Com-
putation (IEC) into a human-robot communication sys-
tem. The IEC isatype of Evolutionary Computation like
Genetic Algorithm (GA), but its fitness function is per-
formed by users. When using the IEC, it is unnecessary
to define the fitness function of the evolutionary compu-
tation. We aso propose the human-machine hybrid eval-
uation (HMHE) to solve a problem of human fatigue.

The structure of the rest of this paper is as follows:
In the next section, the IEC with HMHE is described in
more detail. In section 3, we show the experimental set-
tings. In section 4, experimental results are shown and
we discuss them in section 5. Finally, we summarize this
paper, and we show our future works.

2. IECWITH HMHE

2.1 Interactive Evolutionary Computation

In the conventional Evolutionary Computation (EC),
each individual is evaluated using a given fitness func-
tion. Inthe |EC, itsfitnessfunction is performed by users,
that is, all of the pheno-types are evaluated by the users.
It therefore applies the EC techniquesto problems of sub-
jective optimization without an explicit modeling of hu-
man subjective evaluation [4]. The IEC has previously
been applied to aesthetic areas, such as art, design, and
music [5] [6]. In these areas, fitness functions can not al-
ways be defined explicitly. With the IEC, however, it is



unnecessary to define them.

The IEC has also been applied to optimizing behav-
iors of robots. For example, in a study entitled “A Chil-
dren’s Game” [7], Lund et a. confirmed that the children
could develop the robot’s controller by repeatedly select-
ing one robot from nine robots shown in the CRT display.
This study’s aim was devel oping a robot controller with-
out programming.

Since our goal is to develop more communicative and
interactive behaviors, however, our experiment requires
mutual interaction between a human and arobot. In such
case, the human must interact with and eval uate the robot
one by one. Thus, the human fatigue becomes a more
crusia problem of this study.

2.2 Human Machine Hybrid Evaluation

In this study, the problem of the human fatigue can not
beignored. The longer the experiment is, the more bored
a human gets. Therefore, we need to reduce the number
of genes and generations to minimize the human fatigue,
for these limitations make the EC's learning capability
poorer and slower.

To solve this problem, we devel oped a human machine
hybrid evaluation (HMHE). The HMHE is an evaluation
method that reduces the human fatigue by decreacing
the number of mannually evaluated pheno-types. Using
the HMHE, the human only needs to test some individu-
asthat are automatically selected from the genetic pool.
Then, the fitness values of the other genes are estimated
on the basis of the distances from the data of all selected
genes that the human gave his’lher subjective fitness val-
ues before.

Our proposed algorithm is shown in Figure 1. First,
the IEC process generates an initial genetic pool at ran-
dom. Next, the process analiyzes the newest genes using
the SOM agorithm [8].The SOM is an algorithm that is
suitable for analyzing large multi-dimensional dataset. In
the SOM, similar dataset are placed nearby and dissimi-
lar ones are placed further from one another. The SOM
istrained by the dataset of genesin the genetic pool (see
Fig.2a), and then, seven genesthat have the best matching
dataset with seven neurons placed at the position shown
in Fig.2b, are selected. Thus, we can select the individ-
uals that have distant dataset of genes from one another.
This is efficient for the HMHE because, if the selected
genes are similar to one another, the fitness values of the
other genes can not be estimated.

Then the selected genes are trandated into pheno-
types (parameters of controller) and installed into arobot.
The robot interacts with a human and is evaluated by
him/her. This process continues until all the selected
genes are evaluated.

After that, the genes that weren't selected are auto-
matically evaluated on the basis of the fitness values of
the selected genes. The fitness values are estimated as
follows:
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Fig. 2 The SOM agorithmsin the HMHE: (a) Training
period. The SOM is trained with all genes. (b) Se-
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Here, E¢ut° is the fitness value of gene 4, and Ejmanual
is the fitness value of gene k evaluated manually. n is
the number of the genes evaluated by the user. «;; is
the weight, which is calculated according to the distance
between genes i and k using equation (2). » is a dataset
of agene.

When all the genes evaluated both automatically and
manually, the process applies genetic operators (selec-
tion, crossover, and mutation) to the genetic pool and
generates more appropriate genes.
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3. EXPERIMENTAL SETTINGS

In this section, we show the settings of the experi-
ment that we made in order to confirm the efficiency of
the HMHE. The experiment was carried out by using the
simulator. Experimental subjects controlled a simulated
robot and interacted with a robot controlled by a motion
generator.

We also carried out an experiment without using the
HMHE. Intheplain IEC system (without the HMHE), the
genetic pool has only 7 individualsin the genetic pool, in



order to make the physical work load equal to the IEC
with HMHE. The subjects were 8 members of our labo-
ratory staff. They have high knowledge of the computers
and robots.

3.1 Interaction Simulator

We developed asimulator to investigate for the human-
robot interaction (see Figure 3). In this experiment, two
robots are placed in the virtual environment. The exper-
imental environment is shown in Fig.3a. There were no
objects, obstacles, and textures that could influence sub-
jects. There were only two robots. One was controlled by
the experimental subject, the other was controlled by the
program.

@ (b)

Fig. 3 Interaction environment: The impression of
the environment can influence the human mind. We
didn’t prepare any textures or background images in
this experiment.

To control the simulated robot manually, subjects used
ajoystick with force-feedback function (Fig.3b). On the
simulator screen, the vision captured by the camera of
the human-controlled robot was displayed.The subjects
interacted freely with a program-controlled robot, and if
they were satisfied, they evaluated the robot’s behaviors
by using the same joystick. The score of the robot was
fromOto 1.

3.2WAMOEBA-3

The robot which was displayed in the simulator was
WAMOEBA-3 which is a wheeled, independent robot
with inbuilt batteries and control systems (see Fig.4). Itis
656-mm long, 825-mm wide, 1316-mm tall, and weighs
approximately 105 kg. Its upperbody has two arms (6 de-
grees of freedom) and ahead (4 degrees of freedom). Two
eyes can move independently, which is useful for com-
munication [11], and its vehicle is an omni-directional
vehicle capable of moving in any directions without ac-
tually turning at any stage. It has microphones, ultrasonic
range sensors, two CCD cameras, bumper switches.

3.3 Motor-Agent Networ k

In this study, as a motion generator, we used a Motor-
Agent (MA) model we previously proposed [11]. In the
MA model, al actuators are regarded as autonomous
agents that determine their own actions autonomously
and independently according to the information collected
through the informational network.

Equation (3) shows the output decision of the actua-
tors.
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Here 6; is the rotation velocity of the motor agent i. The
first term of quation (3) isthe calculation result from sen-
sor inputs, and the second term is for the stabilization. o;
is a sigmoid function defined by equation (4). Here, the
~ affects the linearity of the function. If the ~ is larger,
the linearity is smaller. x isthe summation of the inputs
from the sensor network, defined by equation (5). w isthe
connection weight between the agents, and s isthe sensor
input like the encoders or switches.

In this experiment, we prepared avery simple MA net-
work, as shown in Figure 5. Agents with actuation capa-
bilities included the eye and neck agents, and the omni-
directional vehicle agent. The eye agent determined its
rotation direction and speed autonomously according to
the angle of the neck joint and data from the ear sensors
and bump sensors. The neck agent determined its action
according to the angles of both eye joints and the action
of the omni-directional vehicle. The omni-directional ve-
hicle determined its trandational motion on the basis of
input from the bumper switches and ultrasonic range sen-
sors, and its rotational motion on the basis of input from
the angle of the neck joint aswell as the input of the sen-
sors. The image captured by the cameras were not in use
in this experiment.

The examples of the interactions between the human-
controlled robot and the program-controlled robot are as
follows:

1. When physical contact occurred between the human-
controlled robot and the program-controlled onein asim-
ulated environment, the simulator generated force feed-
back effects for the subject. Then the bumper agents in-
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Fig. 5 Simple MA network: The actual MA network
is constructed with all of the possible connections.
However, in this study, we used very simple network
for simplicity.

fluenced the action of the vehicle agent, and the robot
MOVES.

2. When the human-controlled robot made sounds (when
the subject pressed a button on the joystick), the ear sen-
sors (microphones) captured the sound and the ear agents
influenced the eye motor agents.

3. When the ultrasonic range sensors of the program-
controlled robot captured the human-controlled robot or
the walls of environment, the sonar agents influenced the
vehicle agents.

4. The program-controlled robot stopped moving when
its battery level wastoo low. The human-controlled robot
was equi pped with an energy-charging gun which worked
by pressing a button on the joystick. If the human-
controlled robot with the gun was close enough to the
program-controlled one, it could recharge its battery.

3.4 Genetic Settings

To evolve the robot’s controller, we must encode its
parameters into geno-type. In this experiment, the w val-
ues in Equation 5 were encoded into the geno-type rep-
resented by numerical data, which are easy to analyze.
Each connection in the MA network has w, and the num-
ber of components of dataset of a gene was 28.

We used the roulette wheel method and elitism where
the 40 % genes which had high fitness values were pre-
served.

The probability of mutation was 1%, and multipoint
crossover was used. If a mutation occurred, the value of
a selected location was incremented by a small humber
randomly extracted from a distribution centered around
zero (biased mutation).

3.5 Questionnaire Surveys

During the experiments, we suveyed some question-
naires to confirm the subjects’ workload. The surveys
were carried out every three generations. The ques-
tionnaire items we used were developed by Haga et al.
[12]. Actually, the questionnaire was made to confirm
the workload of motormans, but the circumstance of this

experiment is very similar to that of motormans' (see
Fig.3b), so we thought that it is applicable to confirm the
mental and physical workload of these experiments. The
guestionnaire is made of 14 items;

1 You needed to concentrate.

2 You were satisfied with your work.
3 You did not have incentive to work.
4. You wanted to rest.

5. You felt heavy-eyed.

6 You did not have any consolable time.
7 You got bored.

8 You were nervous.

9. You did your best.

10. You could not concentrate.

11. You wanted to stop working.

12. You were almost asleep.

13. You were pressed for time.

14. You wanted to evade from work.

Experimenta subjects score [0, 100] on each items.
After suveying them, we categorized them into seven
subdivisions, such as “difficulty”, “busyness’, “difficulty
of concentration”, “boredom”, “sleepiness’, “tiredness’,
and “sense of accomplishment”. Each category has two
guestionnaire items and the sum of the scores of the two
items was the total score of the category.

4. RESULTS

The behavior acquisition experiments took approx.
120 minutes on average. One evaluation of an individ-
ual took approx. 100 seconds.

The acquired behaviors could be categorized into two
types, one to evade from the subject, the other to get close
to him/her. The subjects preferred dynamic behaviors
that seemed to make sense.

Figure 6 shows the standard deviation of dataset of the
genes which were evaluated by the subjects. The vertical
axis indicates the standard deviation and the horizontal
axis indicates the generation. The line graph of ‘IEC
represents the standard deviation of the prain IEC sys-
tem, and the line graph of ‘IEC with HMHE' represents
that of the IEC with HMHE. As shown in the graph, the
standard deviation of the genesin the plain IEC system
dropped. In the same way, that of IEC with HMHE also
dropped but kept higher level than that of the plain IEC.
This shows that diversity of the genesin the genetic pool
could be maintained at higher level, using the HMHE.

Figure 7 shows the evolution processes of experi-
ments. During the experiments, the fitness values had
been increasing. However, that of the IEC with HMHE
had been higher than the plain IEC.

Figure 8 shows the result of the questionnaire sur-
veys. We could observe the significant differences in
‘tiredness’, ‘boredom’, and ‘ difficulty of concentration’.
The IEC with HMHE showed higher performance than
the prain IEC. We couldn’t observe the significant differ-
ences between them in the other categories.
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Fig. 7 Comparison of fitness value with or without the
HMHE: Opened circles and opened triangles respec-
tively represent average and max fitness values of the
IEC without HMHE. Closed circles and closed trian-
gles represent average and max fitness values of the

IEC with HMHE.

5. DISCUSSION

In such experiment, to keep the fitness values increas-
ing is quite difficult, because, as the experiments were
continued, they had changed their criteria for their eval-
uation and interaction due to their boredom, and robots
that had received favorable evaluations in previous gen-
erations were evaluated differently. Using the HMHE,
though we could gain only the diversity of the genetic
pool, the fitness values increased more quickly. Thiswas
becauase the genetic pool contained various individuals
to adapt to the changes in interactions and evaluations,
even if the criteria was changed.

In the usua EC, if we want to gain the diversity of
the genetic pool, the mutation ratio is highly set a pri-
ori. However, high mutation ratio make the human im-
pression worse because the | EC can not reflect the results
of the human’s selection. On the other hand, since the
HMHE can increase the number of the genes, it can not
only gain the diversity but also reflect the assessor’s pref-
erence.

The effectiveness of the HMHE could aso be con-
firmed in the questionnaire results. We could not observe
any significant differences in ‘difficulty of the work’,
‘busyness’, and ‘sense of accomplishment’. Since the
HMHE can work only for the diversity of the genetic
pool, it was not concerned to the difficulty of the work.

On the contrary, the HMHE showed the advantages
in ‘boredom’, ‘tiredness’, and ‘difficulty of concentra-
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Fig. 8 Questionnaire results: Opened circles and
closed ones respectively represented the plain IEC
and IEC with HMHE. (&) Tiredness. (b)Boredom.
(c)Difficulty of work. (d)Difficulty of concentra-
tion. (e)Sleepiness. (f)Sense of accomplishment.
(g)Busyness.

tion’. If the communication robot can provide various
behaviors, it will prevent the humans from their boredom.
Therefore they could concentrate on the experiments.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed to use the |IEC to acquire
various behaviors of communication-robot. Astheresult,
the | EC was capabl e of |earning the behavior that the sub-
jects preferred, though we did not prepare the criteriafor
interactions and evaluations. The IEC with HMHE in-
creased the number of individualsin the genetic pool, and
effectively overcame the difficulty of continue the exper-
iment. Therefore, it is thought that to keep the variety
of genes in the genetic pool is very important in order to
evolve communicative behaviors.

We have aready applied the IEC into the real robot,
WAMOEBA-3 (Fig.4) [15]. In the real world, the behav-
iors both of the robot and of humans are quite compli-
cated. As the results, the fitness values were gradually
increased. However, to realize longer-term communica-
tion, it is thought that more dynamic behavior adaptation
is favourable. The Evolutionary Computation can also



provide some degrees of adaptability, but it is very slow.
So, the learning function that enable the robot itself to
adapt to the user’s preference is required now. We are
now focusing on the reinforcement learning whose re-
ward system evolves by the IEC.
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