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Using interactive evolutionary computation (IEC), we
created human-robot interaction system that main-
tains user interest over time. Although IEC enables
users to design systems reflecting subjective prefer-
ences, it forces them to evaluate a large number of
individuals. The refined IEC techniques, we pro-
pose in this regard, human-machine hybrid evaluation
(HMHE), lets users manually evaluate only represen-
tative genes, after which HMHE automatically esti-
mates the fitness of other genes, thereby increasing a
population without increasing user evaluation process.
Experimental results showed that preferences easily
change in interaction. We confirmed that HMHE
maintains high diversity, while maintaining user inter-
est.

Keywords: interactive evolutionary computation, human
robot interaction

1. Preface

The increasing use of robotics in fields such as en-
tertainment, medicine, nursing care, and psychotherapy,
makes it necessary for such symbiotic robots to be able
to communicate. Specifically, in interaction that requires
maintaining user interest, particularly with entertainment
robots, such robots must be able to automatically learn
and adapt their behaviors to user preferences. In human-
robot interaction learning algorithms such as neural net-
works are not suited for communication depending pri-
marily on linguistic contexts, so it may be more practi-
cal to apply such learning algorithms to reactive commu-
nications. Introducing behavior-generating algorithms in
searches, for example, could help keep users from getting
bored by adapting to individual user preferences and con-
tinually changing robot behavior.

In attempting to realize such adaptive interaction, we
focused on three issues:

� Diversity of interaction

� Changes over time in subjective preferences

� Evaluation of interactions

To address these issues, we used interactive evolu-
tionary computation (IEC) in learning for communica-
tion robots, enabling them to learn directly from subjec-
tive user evaluation represented by genetic algorithms in
which the fitness function is replaced by subjective human
evaluation [1].

IEC requires deliberate user evaluation in learning, so
gene pool populations cannot be increased too much,
meaning that when IEC is applied to learning by com-
munication robots, users must interact with all genetic-
phenotype robot and provide them with evaluations. If a
population is too large, it will overly burden users, but if
it is too small, genetic data within a gene pool cannot be
made diverse enough, preventing progress in learning.

As a trade-off among gene pool diversity, learning ef-
ficiency, and the burden on users, we propose human-
machine hybrid evaluation (HMHE), which uses auto-
matic evaluation referencing user evaluation in parallel
with IEC and enabling population size to grow without
adding to user fatigue.

In this paper, Section 2 details the three issues we are
focusing on problems - diversity of interaction, changes
over time in subjective preferences, and evaluation of in-
teractions, and features in applying IEC to human-robot
interaction. Section 3 discusses HMHE including an
HMHE performances test using a mathematical model
conducted prior to interactive experiments with users.
Section 4 tells how to install HMHE in the interaction
system. Section 5 describes experiment setup. Section
6 discusses experimental result. Section 7 mentions con-
siderations. Section 8 Presents conclusions and projected
work.

2. Problems in Communication Learning

Problems in learning with human-robot interaction in-
volve diversity of interaction, changes over time in sub-
jective preferences, and evaluation of interactions.

2.1. Problems Related to Diversity of Interaction
Maintaining the diversity of robot behavior to realize

interaction keeping users interested requires multiobjec-
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tive optimization of learning through dynamic selection
of a solution among candidates rather than single-solution
searching, since multiple types of behavior coincide with
user preferences. In multiobjective optimization with or-
dinary GAs, gene pool clustering is first worked out, then
parallel searching conducted for individual fitness func-
tions. Since we do not know, however, how many evalua-
tion items each fitness function consists of, it may be dif-
ficult to optimize GAs by changing evaluations for gene
pools [2].

Regarding learning through dialogues with users, In-
amura et al. used a Bayesian network in searching to
adapt robot behavior to user instructions [3]. Although
techniques using user instructions may be effective to
avoid uncertainties in the real world, such a Bayesian-
based technique requires behavior units designed prior
to setting network nodes. For the technique we propose,
robot behavior is described in terms of weight, etc., rather
than behavior units, because behavior units, not yet dif-
ferentiated, can continue to change variously by learning
through interaction.

2.2. Changes in User Preference over Time
Regarding changes in user preference over time,

changes in the evaluation axis caused by user boredom
present a problem in learning in open-ended human-robot
interactions in this study. If an interaction is long, inter-
actions previously highly evaluated may be reevaluated
lower as the evaluation axis changes over time, meaning
that robots must learn continuously.

To cope with a dynamically changing fitness func-
tion, conventional GAs propose conducting a search while
maintaining diversity or temporarily increasing a muta-
tion ratio by detecting changes in fitness functions [4, 5].
HMHE as we propose it maintains diversity and enables
well more effective adaptation by manipulating mutation
ratios upon detecting worsening evaluations.

Ogata et al. used consolidated learning in interac-
tion using recurrent neural networks (RNNs) [6]. Con-
solidated learning achieves adaptation without sacrific-
ing currently acquired dynamics by learning instructor
data together with current acquired dynamics as instruc-
tor data. Ogata et al. applied this to a navigation task in
which humans and robots interacted and confirmed that
such navigation learning was more than mere learning and
was, in fact, highly varied creative process that generated
mutual interactions between learning while maintaining
consistency in output behavior, it may yet be difficult to
apply RNNs to interactions with a high degree of freedom
(DOF). The evolutionary technique we used is applica-
ble to interactions with a high DOF even though search-
ing time increase. Conservation of genes in a gene pool
makes it possible to ensure some consistency in behavior.

2.3. Problems Related to Interaction Evaluation
Regarding how to evaluate success or failure of inter-

actions in adaptation to user preferences, whatever learn-
ing algorithm might be used, it is necessary to evaluate

behavior success or failure if learning is through behavior
intensification or restraint, regardless of the learning algo-
rithm used. In practice, it is difficult to determine whether
a robot has succeeded or failed autonomously with user
preference on its own account. Since user preference de-
pends strongly on user subjectivity and on context infor-
mation such as the relationship to the robot, the environ-
ment involved and past behavior, it is difficult to construct
a model that quantitatively evaluates interactions regard-
less of circumstances.

Mitsunaga et al. used the perspective of personal space
and optimized behavior parameters through intensified
learning with human-robot distance and meeting of lines
of sight set as the evaluation axis [7]. When psychologi-
cal knowledge is relied on, learning is conducted based on
a criterion of interaction success or failure based in turn
on the user’s unconscious feelings of pleasure or displea-
sure. Some users interacted completely differently, how-
ever, from how researchers expected, so a learning model
with a much wider scope of application is needed.

2.4. IEC Application to Communication Robots

To solve our three issues, we propose applying IEC, as
has been proposed in response to subjective human evalu-
ation or individual differences, in fields such as computer
graphics (CG), fashion design, and music [1, 8]. IEC di-
rectly using subjective user evaluation is also expected to
address individual user differences, dynamic changes in
evaluation indexes, etc. The fact that IEC generates dif-
ferent genes gives robots variety in their reactions to user
behavior, which in turn lets users notice new interactions,
leading to variations in interaction. Being able to retain a
variety of genes at one time should enable robots to adapt
to changing user subjectivity without disrupting learning
and to acquire “intellectual” behavior with both of diver-
sity and rationality, thus reducing user boredom.

IEC has a variety of advantages in optimizing robot be-
havior involving human interaction. Lund et al. proposed
applying IEC to optimizing the controller for a dolly robot
using neural networks [9], presenting plural obstacles and
one robot in nine simulator domains so that users could
select robots that would undertake behavior preferable to
subjects. Their experiments confirmed that promotion of
IEC with such selected individual robots as parents for
subsequent generations could produce children with no
programming capability who undertook desired behav-
ior. Although this study coincides objectively with ours
in robot adapting themselves to psychological user pref-
erences, simultaneously presenting nine robots makes it
difficult to introduce interactions with users.

We targeted one-to-one interaction between a subject
and a robot, enabling robots complete with IEC to re-
ceive evaluations through interactions with users and to
proceed with long-term interactions with users, respond-
ing to changing demands without boring subjects.

IEC involving one-to-one interaction is required to in-
dividually evaluate robots with different genes, which is
tiring to users. The population size in a gene pool must

2 Journal of Robotics and Mechatronics Vol.20 No.4, 2008



Human-Adaptive Robot Interaction Using IEC

thus be limited and the time required for users to evaluate
robot behavior must be reduced. Populations that are too
small, however, tend to cause early convergence, lower
learning efficiency, deprive robots of diversified behavior,
and, as a result, increase user boredom.

These issues could be dealt with using large mutation
ratios to maintain diversity within a gene pool, but such
ratios are the result of random searches, so mutation ratios
that are too large cannot fruitfully reflect user intentions.

Applying IEC to human-robot interaction thus involves
a significant trade-off in learning efficiency, burden on the
user, and gene diversity.

3. Proposal

We start by detailing our proposed HMHE and then
discuss HMHE performance tests using a mathematics
model.

3.1. HMHE
To increase total population size without increasing the

population size for user evaluation and fatiguing users, we
developed human-machine hybrid evaluation (HMHE)
with IEC in which users only evaluate the phenotype of
representative genes in a gene pool, and evaluation of
other genes is automatically calculated based on user eval-
uation of preselected representative genes. This enlarges
the population size without burdening users.

Nagao et al., in a proposal lightening the burden on
users in IEC, made genetic evaluations based on the dis-
tance from facial images of user choices stored in a
buffer [10]. We targeted open-ended interactions and the
need to respond to ever-changing subjectivity. As user
subjectivity changes, previous evaluation results may pre-
vent current interactions from being evaluated correctly,
so we decided not to use records of evaluations but, in-
stead, to use the evaluations of representative genes se-
lected from current gene pools.

Our proposed algorithm is divided into five steps
(Fig. 1).

Step 1 Generation of Initial Individual Genes
As in ordinary EC, initial genetic groups are generated

at random (Step 1, Fig. 1). Information on each gene is
expressed in real numbers.

Step 2 Selection of representative Genes
Representative genes are selected in gene pools out of

the genetic groups generated (Step 2, Fig. 1). Any random
selection of representative genes may result in the selec-
tion of genes with very similar data, lack of availability for
properly evaluating other genes, and possible induction of
boredom in users. We used a self-organizing map (SOM)
as a tool to analyze genetic data at selection. The SOM
analyzes multidimensional data. Numerous elements ar-
ranged in the SOM correspond to data on the same di-
mension with sample data – in this case, vectors of genes
– distant data is arranged at a distant location and data
at a short distance, at a near location, on the recognition

If all genes are
evaluated

Interaction

Selection Process
using SOM

Newest
genetic pool

Human Subjective
Evaluation

The other
genes

Selected
genes

Human Evaluation

Genetic operators
(Selection)
(Crossover)
(Mutation) Yes

No

Translator

Pheno-Type

Estimation System

Step 1

Step 5

Step 4 Step 3

Step 2

Fig. 1. Proposed Algorithm.

Genetic Pool Genetic Pool

Self-Organizing Map

(a) Learning Period (b) Selecting Period

Fig. 2. Selection of Representative Genes Using an SOM.

layer of the SOM and thus self-organizing [11]. Despite
its simple algorithm, the SOM analyzes multidimensional
data and is visualized to help adjust parameters used for
analysis, which is why we used the SOM to analyze genes
in this algorithm.

Figure 2 shows the selection of representative genes
using the SOM. In HMHE, SOM learning is first con-
ducted for all genetic data in a gene pool. Element data
on the recognition layer of the SOM is self-organized and
near data arranged at a near location and distant data at a
distant location. Elements at plural distant points on the
SOM are selected and genes with data closest to such se-
lected elements are selected as representative genes. The
selection of elements on the SOM for selection of rep-
resentative genes may vary with the SOM used, but vi-
sualization enables developers to make interactive adjust-
ments and facilitates design. Phenotypes (robot behavior)
presented to users are diversified to avoid “boredom.”

Step 3 Interaction
Only genes selected above are translated as a behavior-

generating algorithm representing the phenotype and in-
troduced to a robot. Users interact with robots and make
their own subjective evaluations (Step 3, Fig. 1).

Step 4 Automatic Evaluation Estimation
After all selected genes are evaluated, the fitness of

other genes is automatically estimated (Step 4, Fig. 1). In
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automatic evaluation, the fitness of representative genes
obtained by manual evaluation is weighted based on the
distance between data on genes evaluated and data on rep-
resentative genes. Evaluation expressions are as follows:

Eauto
i �

n

∑
k�1

αikE
maunal
k . . . . . . . . . . (1)

αik � 1�
�rrriii � rrrmanual

kkk �

∑n
j�1 �rrriii � rrrmanual

jjj �
. . . . . . . (2)

where Eauto
i , a calculated evaluation value of gene i, the

weighted sum of Emanual
k , evaluation values of representa-

tive genes as obtained by users, and n indicates the num-
ber of individual genes evaluated by users. Weight α ik,
the ratio of distance between evaluated gene i and repre-
sentative gene k to the sum of distances between evalu-
ated gene i and all representative genes, is calculated us-
ing Eq. (2), where rrr denotes data on individual genes: rrriii
refers to evaluated gene i and rrrmanual

kkk and rrrmanual
jjj to repre-

sentative genes k and j.

Step 5 Generation of New Gene Pools
Once evaluation is completed, next-generation gene

groups are generated by applying genetic operators such
as selection, crossover, and mutation (Step 5, Fig. 1).

In HMHE, where the majority of evaluation processes
can be programmed and population size enlarged without
fatiguing users so as to ensure diversity in a gene pool,
user boredom is avoided by increasing diversity in robot
behavior.

3.2. Performance Tests
To determine searching capabilities of the IEC using

HMHE in application to human-robot interaction, we con-
ducted performance tests using a mathematics model, de-
tailed below.

3.2.1. Tests

We used a mathematics model in the performance test
of HMHE for simplification. Mathematics modeling of
human preferences is not really possible. Noting that sev-
eral behaviors, not just one behavior, of robots coincide
with user preferences, we used the polymodal Schwefel
function, together with a single-modal sphere function, to
compare searching efficiency.

fsphere�xxx� �
n

∑�xi�
2
� . . . . . . . . . . (3)

Schwefel in n dimensions is a polymodal function ex-
pressed as follows:

fschwe f el�xxx� �
n

∑ sin�
�
�xi�� . . . . . . . . (4)

where xxx denotes an n-dimensional vector and xi the ith ele-
ment of vector xxx (Fig. 3). The ordinate is inverted through
division by 1 after being normalized to [0, 1] to establish
uniform criteria for subsequent tests so that the higher the
evaluation, the higher the degree of adaptability to the en-
vironment.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-400
-200

 0
 200

 400
-400

-200

 0

 200

 400

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

-400
-200

 0
 200

 400
-400

-200

 0

 200

 400

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(a) Sphere Function (b) Schwefel Function
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We tested these two functions when HMHE is used
(population size: 100) and not used (population size: 8
and 100). For the population size in a gene pool, HMHE
would allow unlimited use of all population size in any
test with HMHE including this performance test, but too
large a population would take too long for calculation in
SOM learning and further induce user fatigue. Since our
preliminary test showed that HMHE performance could
be evaluated even for a 100-population size, we used a
population of 100 for EC using HMHE and also for EC
not using HMHE for comparison. In this performance
test and subsequent test evaluation with HMHE on a pop-
ulation size of eight (8), evaluations without HMHE were
done on the same population size for comparison. Since
both functions were two-dimensional, the gene type was
expressed as a sequence of real values, and phenotype,
also by two dimensional vectors (x1, x2).

Next-generation genetic groups were generated based
on elite conservation strategy: 40% of genes survive
into the next generation and the remaining 60 % is gen-
erated from parent genes selected from the surviving
40 % through roulette by fitness. Searching was con-
ducted without using crossover by applying mutation to
a gene locus (array element) within the chromosome. For
HMHE, a hexagon map with sides of four elements (total
elements: 37) was used for the SOM. With the distance
between genes being Euclidean, eight genes consisting of
genes near seven points, i.e., the center of the map and six
vertices of the hexagon, and a representative gene of the
previous generation were selected as representative.

3.2.2. Results

Figure 4 shows the transition of fitness values in a
sphere function (abscissa: generation; ordinate: fitness),
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representing average maximum fitness in ten trials under
each condition. For the sphere function, HMHE was in-
ferior in performance in the initial search for IEC (size =
100) and IEC (size = 8).

For the polymodal Schwefel function, HMHE showed
performance equivalent to IEC with size = 8, although far
inferior to IEC with size =100 (Fig. 5).

Figure 6 shows genetic data of generation 100th ob-
tained by optimizing genes as two-dimensional real num-
ber vectors using the Schwefel function ( abscissa: ge-
netic data x1; ordinate: genetic data x2), and round and
triangular plots in Fig. 6(b), HMHE-selected and unse-
lected genes. This confirms that increased population size
in using HMHE extends the search range and that gene
selection by the SOM presents to users genes distant from
each other (Fig. 6(b)).

3.2.3. Discussion

Test results show that HMHE is inferior in performance
to an ordinary IEC with the same population size. When
IEC is applied to human-robot interaction, however, what
matters is search capabilities in limited evaluation time in
view of user fatigue. For us, it is therefore more important
to compare the case of the same number of evaluations
rather than that of the same population size.

A comparison of the two cases under the same con-
dition, i.e., HMHE and conventional IEC with popula-
tion size = 8, shows that conventional IEC is superior
to HMHE in the single-modal sphere function. Ordinary
IEC increases fitness monotonously, but HMHE uses rep-
resentative genes for evaluation to calculate fitness based
on similarity to representative genes and cannot searching
unless representative genes are extreme.

Behaviors that users prefer in interaction between users
and robots is so diversified that it presents polymodality.

Fig. 7. WAMOEBA-3.

For the polymodal Schwefel function, IEC using HMHE
closely matches conventional IEC in performance. Using
HMHE enables much wider searching than conventional
IEC and ensures dispersion of genes presented to users.

While IEC using HMHE ensures diversity in solutions
and a very wide search range, uncertainties in the esti-
mation of fitness for unselected genes may lead to poorer
learning convergence. In interaction with users, however,
learning convergence will not depend on evaluation axis
transition, so it is more important to maintain the diver-
sity of genes that will enable continuous learning during
interaction.

4. Mounting in Interaction System

We implemented our proposed HMHE into interaction
system using a simulator to validate the effectiveness of
our proposal in user-robot interactions. For experiments,
we used a simulator to verify behavior of the Waseda Arti-
ficial Mind on an Emotion Base (WAMOEBA-3), arrang-
ing two robots in virtual space inside the simulator and a
user manipulating one of the two robots interacting with
the other robot complete with a behavior-generation algo-
rithm.

4.1. WAMOEBA-3
We developed WAMOEBA-3 (Fig. 7), a plat-

form for experiments in human-robot communications.
WAMOEBA-3 is 1316 mm high, 825 mm wide, and
656 mm deep, i.e., about the height of an elementary
school student. We consider it advantageous in commu-
nication for a robot to be humanoid, so WAMOEBA-3
has two arms with 6 DOF and a head with 8 DOF, plus
several sensors. The head has two CCD color cameras,
two microphones, and one speaker. Each camera and au-
ricles (ears) turn left and right independently and repre-
sent a direction of attention in each mode. We used an
omnidirectional vehicle to move WAMOEBA-3, enabling
small slewing radii and omnidirectional movements to en-
hance safety in interaction with users. The vehicle has ul-
trasonic sensors, contact switching sensors, etc., enabling
the robot to move, measure distances to users, and evade
walls and other obstacles.
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(a) Subject’s View (b) Environment

Fig. 8. Simulator and Environments in Virtual Space.

4.2. Interaction Simulator
In experiments, we used a simulator to verify

WAMOEBA-3 activity (Fig. 8). Inside the simulator,
there were no solid textures or obstacles that would psy-
chologically affect users, apart from the two robots. One
robot has a behavior-generation algorithm and users ma-
nipulate the other robot using a joystick with force feed-
back to interact in virtual space. Users can get the robot to
move around or turn its head by manipulating the joystick,
and can have the robot speak by pushing a button. Po-
tential contact with a wall or robot is presented via force
feedback.

4.3. Behavior Generation Algorithm
The behavior generation algorithm for WAMOEBA-

3 used motor agents, an autonomous distributed behav-
ior generation algorithm[12]. This algorithm generates
reflexive behavior in a communication robot such as
WAMOEBA-3. Each motor in the motor agent deter-
mines its own direction of turning and velocity, based on
the weighted sum of sensor information collected from
the network.

Equation (5) determines the output of each motor:

θ̇i � λiσi�xi��δiθi . . . . . . . . . (5)

σi�xi� � exp
�
�γi �xi � c�2

�

�exp
�
�γi �xi� c�2

�
. . (6)

xi �
j

∑
m�0

ω jis j . . . . . . . . . . . (7)

where θ̇i indicates the output angular velocity of the i th

motor agent, the first member commands calculated based
on information from the sensor network, δ i in the second
member a constant for stabilization, σi a sigmoid func-
tion as defined by Eq. (6) having two gentle steps where
a negative value is given to x � 0 and a positive value to
x � 0, γi is the more steps a function has and the wider
the dead zone near x � 0; xi is the sum of values obtained
by multiplying sensor network information by a coupling
coefficient as determined by Eq. (7), ω ji coupling strength
with the ith motor agent and the jth sensor, and s j indicates
normalized input of the jth sensor such as an encoder or
switch.

Motor agents must define a network of motors and sen-
sors connected by weighted coupling to collect informa-
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Fig. 9. Motor Agent Network for Experiments.

tion from sensors (Fig. 9).
Below are examples of interaction in the motor agent

network.

� Touching touch sensors around the vehicle turns the
robot toward an object or a user, or turns it inversely
while making the vehicle move back and forth or left
and right. The camera also turns in each direction.

� If a user speaks, the camera and head move.

� A user standing near the robot triggers the ultrasonic
sensor and makes the vehicle move back and forth or
left and right.

� Following the movement of the camera and head, the
vehicle turns in the same or opposite direction.

4.4. Genetic Description and Evolutionary Compu-
tation Parameters

To optimize a controller consisting of the above mo-
tor agents by IEC, ω in Eq. (7) corresponding to the net-
work’s coupling strength was input to gene, while param-
eters such as γ , functional-linearity values, were made
constant. Each parameter was described using real num-
bers, and genes were arrayed using real values with 27
dimensions consisting of coupling strength of 27 connec-
tions: from a microphone to a camera, from a camera to
the head for turning, from a camera to the head for up-
down movement, 12 connections between four ultrasonic
sensors and three vehicle movements, and 12 connections
between four touch sensors and three vehicle movements.

Experiments used crossover realized by random ex-
changes of array elements so that robot behavior param-
eters on genes, concentrated in the head, vehicle, etc.,
would be propagated all together within each group. If
mutation occurred whose ratio was set at 1 % for each ar-
ray element, random values were added. Of parent genes
selected by roulette, individuals having 40 % epistatic
genes are inherited by the next generation in what is called
elitism.

4.5. HMHE Setup
The number of individuals was set at 50 so that learning

time taken by the SOM during experiments was about 10
seconds in view of preliminary experiment results.

For the SOM, for which quadrangular and hexagonal
neighborhood functions are generally used, we used the
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hexagonal neighborhood function setting the number of
neurons on the cognitive layer to 37 (4 elements on one
side of a hexagonal map) based on results of preliminary
experiments on learning time and convergence on the cog-
nitive layer.

We used a Euclidean distance to define the distance be-
tween genes used for learning by the SOM and estimation
of fitness values.

5. Evaluation Experiments

Using the interaction system above, we conducted eval-
uation experiments among users, who were nine of our
university students. In experiments, which are based on
(1) conventional IEC (population size = 8) alone and (2)
IEC using HMHE (population size = 50, 8 evaluations),
10 attempts at evaluation were conducted from genera-
tion 0 of an initially generated gene pool to generation 9.
Since sequential effects cannot be ignored in these exper-
iments, the user sequence was changed for each experi-
mental condition. Once experiments were completed, we
conducted a t-test for each sequential condition with no
significant difference between the two condition.

We also surveyed users during and after experiments to
determine their work loads, as detailed in the sections that
follow.

5.1. Experimental Setup
Information given to users before experiments was as

follows:

1. The robot has a microphone fitted in its ears and can
react to sound.

2. The counterpart robot does not use a camera.

3. The robot’s arms do not move.

4. Ultrasonic sensors on the robot recognize distance to
objects or walls.

5. Switches on the vehicle detect contact.

6. Score the robot presenting interesting behavior out
of a total of 100 points (perfect score).

Users then did a trial experiment for one generation to
ensure that they understood the experimental flow, and
practiced operating the simulator. After a break, users
conducted experiments.

When we apply IEC to a survey on impressions made
by robots, questions should be prioritized based on a sin-
gle fitness value based in turn on a weighted sum, but it
is difficult given individual differences among users, to
set priorities in advance. Based on the task load index
(NASA-TLX), users should determine their own priori-
ties of items such as mental demand, physical demand,
time demand, self-performance, effort, and frustration. In
this study, involving a large number of experiments, how-
ever, evaluations were based on a single evaluation axis

Table 1. Survey Questions (after Haga et al.).

Item Details
1 Concentration was needed.
2 Work was done as desired.
3 Motivation was lacking.
4 I wanted to take a break.
5 I became sleepy.
6 I was too busy to rest.
7 The work was boring.
8 I felt tense.
9 I worked very hard.

10 I could not concentrate on the work.
11 I wanted to stop the work before it was finished.
12 I felt like going to sleep.
13 I was pressed for time.
14 I wanted to get away from the work.

given the burden on users determining priorities. Users
were allowed to input evaluation values at any timing.

5.2. Questionnaire
To determine user work loads, we surveyed evaluations

for every three generations after completion of evaluation
of generation 0. For questions, we used the burden survey
proposed by Haga et al. [13] (Table 1).

Users gave each question (14 in total) to 5 points. The
14 items were classified into the following seven pairs:
items 1 and 8 (difficulty); items 6 and 13 (busyness);
items 3 and 10 (difficulty in concentration); items 7 and
14 (boredom); items 5 and 12 (sleepiness); items 4 and
11 (tiredness); and items 2 and 9 (accomplishment). The
points given to each pair yielded a score for each category.

In these experiments, we used the above burden survey,
initially developed to measure the work load of a train
operator, because it presented an environment similar to
simulator operation.

6. Experimental Results

Evaluation by a single user took about 100 seconds and
one user spent about two hours in evaluation.

6.1. Fitness Value Transition
Fitness values by IEC alone tended to stagnate in

growth in generation 5 and after, while HMHE-combined
IEC maintained growth, meaning combined use of
HMHE in IEC showed higher fitness than conventional
IEC later on in experiments (Fig. 10).

6.2. Diversity in Interaction
The interaction system we used in experiments dealt

with the following interactions: a user walking around a
robot observes whether the counterpart robot turns toward
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Fig. 11. Standard Deviation of Genetic Data Presented to Users.

the user; the user observes robot reactions to the user’s
speech; the user observes how the robot reacts when the
user touches the robot.

6.3. Maintenance of Gene Diversity by HMHE

We analyzed the maintenance of gene diversity by
HMHE (Fig. 11). Standard deviation (SD) was calculated
using the following equation:

SD�xxx� �

�
∑n

i�0�xi � x̄i�2

n
. . . . . . . . (8)

where xi indicates the ith element of vector xxx, part of ge-
netic data, and x̄i the average of all xi for all genes in the
gene pool.

Compared to IEC alone, we confirmed that use of
HMHE with IEC ensured that genetic data remained dis-
persed during experiments.

6.4. Changes in User Evaluation Axes

In an example of robot movement output by the sim-
ulator (Fig. 12), robot A is manipulated by the user and
robot B is programmed. Two types of movement indicate
interactions for individuals with the same gene in differ-
ent generations. For generation 6, the user observed robot
behavior at a constant distance from the robots approach-
ing the user. For generation 7, the user walked around
robots from the counterpart robot’s right side as soon as
the experiments started and observed robot reactions to
user speech. As a result, the robot won 90 points in eval-
uation in generation 6 but scores dropped to 50 in genera-
tion 7.

A

B
6th generation 7th generation

Fig. 12. Changes in Interaction between Generation: A in-
dicates the movement path of the robot manipulated by the
user and B, the movement path of the preprogrammed robot.

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8
Generation

D
iff

er
en

ce
 o

f F
itn

es
s 

V
al

ue

Fig. 13. Variations in Fitness Values of Most Elite Individ-
ual between Generations.

We analyzed changes in fitness values by users. In
experiments, users were presented with seven individual
robots with genes selected by the SOM for HMHE and the
best individual robot in the previous generation to deter-
mine how the best individual robot in the previous gen-
eration was evaluated in the next generation (Fig. 13).
This represents an average absolute value of differences
in fitness values for the most elite individual between pre-
ceding and subsequent generations, excluding the value
marked by one of the nine users that noticeably differed
from others. This represents whether interactions by the
most elite individual in each generation were evaluated
highly or lower in the next generation, and thus is a
good indicator of changes in user evaluations. Results for
changes in fitness values were widely dispersed, particu-
larly between generation 3-4 and 6-7.

6.5. Survey Findings
In survey findings by generation for combined use with

HMHE, scores for tiredness in generation 3, for boredom
and difficulty in concentration in generation 6, and for
difficulty in concentration in generation 9 were signifi-
cantly lower (Fig. 14). No significant differences were
seen, however, in categories such accomplishment, diffi-
culty, busyness, and sleepiness.

7. Discussion

7.1. Maintenance of Diversity in Interaction
HMHE was developed for and implemented in a com-

munication robot to avoid user boredom by maintaining

8 Journal of Robotics and Mechatronics Vol.20 No.4, 2008



Human-Adaptive Robot Interaction Using IEC

0

50

100

150 Difficulty

Busyness

Difficulty of
Concentration

BoredomSleepiness

Tiredness

Accomplishment

0

50

100

150Difficulty

Busyness

BoredomSleepiness

Tiredness

Accomplishment

Difficulty of
Concentration

*

initial generation 3rd generation

0

50

150 Difficulty

Busyness

Difficulty of
Concentration

BoredomSleepiness

Tiredness

Accomplishment

*
*

0

50

150 Difficulty

Busyness

BoredomSleepiness

Tiredness

Accomplishment

Difficulty of
Concentration

*

6th generation 9th generation

IEC HMHE
(P� 0�05 )

Fig. 14. Comparison of Survey Findings.

diversity in the gene pool. In comparison to conven-
tional IEC by a simulator, use of HMHE significantly
increased fitness values in the later part of experiments
(Fig. 10). Differences in fitness values thus appeared to
reflect changes in evaluations by users, i.e., their degree
of boredom.

Effects of HMHE are due to the maintenance of diver-
sity in the gene pool (Fig. 11). The ability to retain differ-
ent genes in a gene pool at all times thus appears to have
enabled a variety of behaviors to be presented to users.

7.2. Changes in Evaluation Axes of Users
A detailed look at the transition of fitness values among

generations (Fig. 10) showed that timing when fitness val-
ues dropped coincided with changes in evaluation axes
between generations 3-4 and 6-7 (Fig. 13), apparently in-
dicating that users were so bored with monotonous exper-
iments that they used different evaluation axes between
generations 3-4 and 6-7, resulting in decrease in overall
fitness values. Changes in evaluation axes are inevitable
in an interaction experiments.

HMHE appears to cope with changes in evaluation
axes of users by increasing the population size, meaning
that even if evaluation guidelines of users are changed, it
is possible to produce genes closely approximating new
evaluation guidelines as long as diversity within a gene
pool is maintained. This is why fitness values did not de-
crease in the later part of experiments.

7.3. Calculating Distances between Genes in
HMHE

Survey findings confirmed the effectiveness of HMHE
in handling psychological burdens such as boredom, so
no differences were recognized in items such as difficulty
and accomplishment in learning effects. Accomplishment
used in these experiments refers to accomplishment of a

robot in learning, i.e., whether a robot comes to behave
as desired by a user. Effects of HMHE are limited to the
avoidance of user boredom and do not directly affect ac-
complishment in learning.

Why an increased number of genes did not improve
accomplishment lies in the method for calculating dis-
tance between genes. In HMHE, fitness values are auto-
matically calculated by the program assuming that genes
closer to each other will receive similar fitness values,
whereas in interaction between robot and users, distance
between genes as parameters for a robot does not always
coincide with distance between user evaluation of inter-
action. In these experiments, we used genes expressed
as real numbers and Euclidean distance, which, however,
requires further consideration.

According to user opinions of interaction, some cou-
pling strength in the motor agent network, e.g., touch sen-
sors on the back, used in these experiments does not di-
rectly affect overall impression, but others do affect such
considerations significantly, e.g., those related to vehicle
and head movement. This suggests that effects can be im-
proved by calculating distance using weighted elements
rather than simple Euclidean distance, with weights ac-
quired during learning.

7.4. HMHE Effects and Scope of Application
Although the interaction system using IEC with HMHE

does not greatly improve learning efficiency, it requires
only a small number of evaluations while retaining the
diversity of genes in individuals presented to users. Re-
sults of evaluation experiments showed significant im-
provement in boredom and tiredness, but not in accom-
plishment of learning by interaction. It also could cope
with changes in evaluation axes during long-term experi-
ments.

This suggests that in adaptive interaction using IEC, the
trilateral trade-off of learning efficiency, number of eval-
uations, and diversity should be addressed by prioritiz-
ing the diversity of behavior and lightening the burden on
users rather than learning efficiency so that user do not
become bored in long-term interaction.

This interaction, which places less emphasis on learn-
ing efficiency, can be better applied to areas that require
long-term interaction, rather than to tasks whose accom-
plishment is related to serious problems such as user
safety. The system used in these experiments cannot out-
put behavior that takes contexts into consideration and are
limited in application to communication based on reactive
behavior. We consider it possible, however, to develop
communication that adapts to time series interactions by
combining the system with a behavior generator such as a
recurrent neural network that deals with time series infor-
mation.

8. Conclusions and Projected Work

We have proposed HMHE in which subjective user
evaluations are used together with automatic calculation
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of fitness values for coping with problem of user boredom
and tiredness arising when IEC is applied for acquisition
of behavior by a communication robot. Application of
IEC to human-robot interaction involves the problem of
balancing learning efficiency, user boredom due to early
convergence, and tiredness due to increased population
size. To cope, HMHE is programmed to automatically
calculate fitness values of remaining genes by referenc-
ing subjective user evaluations. Results of performance
tests and simulation showed that HMHE effectively re-
duces user tiredness and boredom, although no significant
improvements were seen in learning efficiency.

Our results suggest that the trilateral trade-off of learn-
ing efficiency, gene diversity, and burden on users can
be better addressed by emphasizing the maintenance of
diversity and the reduction of burden on the user rather
than pursuing learning efficiency. HMHE, which gener-
ates a variety of genes with a small number of evaluations,
proved effective in enabling the above balance.

In repeated experiments using actual robots with IEC,
we confirmed that IEC with HMHE proceeds with learn-
ing by adapting itself to users’ changing preferences [14].
We are planning to conduct experiments over a longer
term.

The system we used has a number of shortcomings:
Since no dynamic changes are incorporated in genes of
phenotype robots, users will be bored quickly and short-
ened time of evaluations by users may prevent users
from evaluating robots appropriately. To overcome such
shortcomings, we have introduced intensive learning into
robot behavior generation algorithms and optimized re-
ward functions by IEC. This is expected to create adapt-
ability of IEC on a group level, and learning efficiency
of IEC and diversity of behavior on an individual level,
thereby lengthening user interaction time.

The behavior generation algorithm we used is a simple
reactive-behavior generator that cannot deal with time se-
ries information. We are therefore planning to introduce
a behavior generator that deals with context information,
such as a recurrent neural network.
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