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Abstract— We created a human-robot communication system
that can adapt to user preferences that can easily change
through communication. Even if any learning algorithms are
used, evaluating the human-robot interaction is indispensable
and difficult. To solve this problem, we installed a machine-
learning algorithm called Interactive Evolutionary Computation
(IEC) into a communication robot named WAMOEBA-3. IEC is
a kind of evolutionary computation like a genetic algorithm. With
IEC, the fitness function is performed by each user. We carried
out experiments on the communication learning system using an
advanced IEC system named HMHE. Before the experiments,
we did not tell the subjects anything about the robot, so the
interaction differed among the experimental subjects. We could
observe mutual adaptation, because some subjects noticed the
robot’s functions and changed their interaction. From the results,
we confirmed that, in spite of the changes of the preferences, the
system can adapt to the interaction of multiple users.

I. INTRODUCTION

In coming years, robots are expected to contribute much
to our lives through nursing, house-keeping, and other areas.
These robots should be able to communicate with humans
effectively. Human-robot communication is not only for giving
commands to the robot, but also for entertaining or relaxing
the user, so communication should have variety and flexibility.
However, most of robots can only communicate using the
scenarios designed by their developers. Though scenario-
based communication is practical for the context-sensitive
communication like verbal communication, it lacks variety and
flexibility.

On the contrary, we think that describing entire scenarios
is not necessary for human-robot communication. We are
interested in a behavior-based technique. Various, complex
behaviors can be generated through interaction between a
robot and its surroundings, including humans. Though a
behavior-based technique is not yet suited to context-sensitive
communication, such a technique would make human-robot
interaction very flexible. However, even though entire scenar-
ios are not described, a robot’s behavior which corresponds
to the specific sensory input is defined by the designer a
priori. Ideally, to achieve user-friendly robot communication,
the robot’s behavior should be configured not by the designer
but by the user. However, most of users do not have any

programming skills, so it is desirable that robots should have
functions that enable them to learn.

Therefore, our goal is to create a robot with user-adaptive
communication. Using machine-learning algorithms, such as
a neural network, reinforcement learning, and genetic algo-
rithms, the robot can changes its behavior through interaction,
which prevent users from boredom. However, those learning
algorithm when using in the human-machine interaction have
potential problem, that is, quantitative evaluation problem.
Though it is indispensable for the learning algorithm to evalu-
ate how successful the behavior was, the subjective evaluation
of the interaction is quite difficult to model. For example,
Ishiguro et al. conducted some experiments of behavior adap-
tation using Policy Gradient Reinforcement Learning [15]. In
this experiment, they hypothised that a human’s gaze, motion
speed, and distance between a human and a robot indicate
how well the interaction was. However, the human’s evaluation
and interaction are quite complicated and varied, so that the
humans sometimes behave beyond the developer’s expectation.

To address this problem, we introduced Interactive Evo-
lutionary Computatiaon (IEC), a kind of evolutionary com-
putation, such as a genetic algorithm. In conventional EC,
designers have to define a fitness function that evaluates how
successful genes are. On the other hand, the fitness function
in IEC is performed by the user, so we do not have to model
the user’s preferences, and we can apply a machine-learning
to the problems of human subjective preferences.

Moreover, IEC is able to keep the user’s interest, because
it can generate various behaviors using a diverse of the
genetic pool. To improve this advantage, we developed an
advanced evaluation technique called Human-Machine Hybrid
Evaluation (HMHE). In HMHE, some representative genes are
manually evaluated by the user, while the others are evaluated
automatically using the results of the manual evaluation.
This technique can increase population size of genetic pool
without increasing human fatigue. We installed HMHE in a
communication robot named WAMOEBA-3, and confirmed
that the method will not bore the user [13]. However, in the
former experiments, we told the experimental subjects the
function of the robot, so the interactions were restricted.

In this paper, we show the further experiments in the
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real world. To realize various interactions, we installed extra
sensors and actuators in the robot and did not tell experimental
subjects anything about the robot before their interaction.
Eventually, the interactions differed remarkably among the
subjets, but the robot could adapt to their preferences. In the
next section, HMHE is described in detail. Then, in section
III, the experimental settings are described. In section IV, we
show the experimetal results, and we discuss them in section
V. Finally, we summarize this study and indicate areas for
future work.

II. HUMAN-MACHINE HYBRID EVALUATION

Though IEC can be used to address preferences, it causes
human fatigue. Since the user must evaluate all of the genes in
genetic pool, the population size and generations are strictly
limited. This limitation causes an early convergence problem,
which bores the user. This is because the robot’s behavior
is simplified when the genetic pool converges. To solve this
problem, the diversity of the genetic pool must be kept at a
high level during interaction without increasing human fatigue.

We developed a Human-Machine Hybrid Evalution
(HMHE) technique, where the genes are evaluated both man-
ually and automatically. Figure 1 shows the flowchart of the
HMHE.
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Fig. 1. Human-Machine Hybrid Evaluation

First, all of the generated genes are analyzed with a self-
organizing map (SOM). An SOM is useful for analyzing
a multi-dimensional dataset. In the SOM, the genes with a
similar dataset are placed near each other, while dissimilar
genes are placed away from each other. We used the SOM
algorithm because the algorithm was very simple and if we
define the distance between two dataset, it can eventually
analyze a bunch of the sample dataset. Using the SOM, the
various representative genes are selected as follows. First, the
SOM is trained by the dataset of all genes in the genetic

pool (see Figure 2(a)). Next, seven genes are selected; each
selected gene has a best matching dataset among each of the
seven neurons placed at the positions shown in Figure 2(b).
Therefore, we can select individuals that have datasets of genes
that are distant from each other, which is efficient for the
estimation function.

Genetic Pool Genetic Pool

Self-Organizing Map

(a) Training Period (b) Selecting Period

Fig. 2. Positions of selected genes on SOM

Then, each representative gene is translated into pheno-type
(the robot’s parameter), and the robot interacts with a user.
Next, the user evaluates the robot’s behavior. This sequence
continues until all of the representative genes are evaluated.

After that, the fitness values of the other genes are estimated
automatically. The estimation function is as follows:

Eauto
i =

n

∑
k=1

αikEmaunal
k (1)

αik = 1− ‖rmanual
i − rk‖

∑n
l=1 ‖rmanual

l − rk‖
(2)

Here, Eauto
i is the fitness value of gene i, and Emanual

k is the
fitness value of gene k evaluated manually. n is the number
of the genes evaluated by the user. αik is the weight, which
is calculated according to the distance between genes i and k
using equation (2). r is a dataset of a gene.

This technique can increase the number of genes without
increasing human fatigue. Therefore, the system can maintain
gene diversity and the users’ interest.

We carried out some simulations to compare the HMHE to
the conventional IEC [12]. In the simulation, the HMHE had
a higher fitness value than the plain IEC.

III. EXPERIMENTAL SETTINGS

A. WAMOEBA-3

Our IEC experiment took a considerable amount of time,
because each subject evaluates a number of genes. Therefore,
the robot must have a variety of behaviors to keep the subject’s
interest, harmless to people, and be easy to maintain and
customize. The robot must also be able to move without
cables for power supply or control, because cables prevent
easy interaction with humans.

We used a communication robot called the Waseda Ar-
tificial Mind On Emotion Base (WAMOEBA-3, Figure 3).



WAMOEBA-3 is an independent, wheeled robot, with built-in
batteries and a PC. This robot was developed as a platform
for communication experiments. Its upper body is similar to a
human one and its size is about the average size of Japanese
children: 825 mm wide, 1316 mm tall. WAMOEBA-3 weighs
approximately 105 kg. It is equipped with two arms (7 degrees
of freedom) and a head (8 degrees of freedom). Each joint
has a torque sensor to measure the stress on the arm and
head. WAMOEBA-3 is also equipped with an omni-directional
vehicle for locomotion, which can move in any direction
without actually turning at any stage. This is advantageous
for both the variety of its behavior and for safety.

Fig. 3. WAMOEBA-3

The WAMOEBA-3 has also a lot of sensors. It has shoulder
covers installed with 6-axis force sensors to detect touches
on the shoulders. The head has two CCD cameras and two
microphones. Each camera can independently move vertically
and horizontally, and each ear can rotate horizontally, which
enable the robot to indicate the direction of its attention. The
vehicle has eight bumper sensors, three infrared sensors, and
eight ultrasonic sensors. Table I shows the specifications of the
WAMOBA-3 in more detail. We did not use all of the internal
sensors, like the battery voltage or thermal sensors.

B. Robot Motion Generator

We used the motor-agent model (MA model) proposed in
former studies as a motion generator of the WAMOEBA-
3 [14]. The MA model is a distributed control algorithm
in which all the actuators and sensors are linked to each
other with connections. Each actuator autonomously collects
sensor inputs through the network and determines its motion.

TABLE I

SPECIFICATIONS OF WAMOEBA-3

Dimensions mm 1316 (H) x 825 (L) x 656 (W)
Total Weight kg 105
Max speed km/h 3.5

Payload kgf/hand 5.0
Drive Time hours 1.5
Drive Camera DOF 1+1 x 2=3

Member Ear DOF 2
Neck DOF 3

Vehicle DOF 3
Arm DOF 6 x 2=12
Hand DOF 1 x 2=2

Outside Vision CCD Color camera x 2
Sensors (x10 Optical zoom,

x4 Degital zoom)
Sound input Microphone x 2

(Directional hearing,
Voice recognition)

Sound output Speaker(Voice synthesis)
Distance Ultrasonic sensor x 8

Human Body Pyroelectric sensor x 3
Collision Bumper switch x 8

Joint stress Torque sensor x 14
Shoulder 6-Axis force sensor x 2

Structural material Extra super duralumin
Titanium alloy (Ti-6Al-4V)

aluminium (52S)
CPU Pentium4 (3.2GHz)

Microcomputers VR5550-ATOM×5
OS Linux

Battery Lead-Acid Battery for EV

Equation (3) shows the output decision of the actuators.

θ̇i = λiσi(x)−δiθi (3)

σi(xi) = exp
[
−γi (xi − c)2

]

−exp
[
−γi (xi + c)2

]
(4)

xi =
j

∑
m=0

ω jis j (5)

Here θ̇i is the rotation velocity of the motor agent i. The
first term of quation (3) is the calculation result from sensor
inputs, and the second term is for the stabilization. σi is a
sigmoid function defined by equation (4). Here, the γ affects
the linearity of the function. If the γ is larger, the linearity
is smaller. x is the summation of the inputs from the sensor
network, defined by equation (5). ω is the connection weight
between the agents, and s is the sensor input like the encoders
or switches.

Using the MA model, the network has to be defined. We
used the very simple network shown in Figure 4.

The characteristic behaviors achieved by this network are
as follows.

• If someone waves his hand in front of the camera, the
robot detects a moving region of the image, and the eyes
move vertically or horizontally.

• If someone touches a bumper sensor placed on the
vehicle, the vehicle either turns towards or away from
him.
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Fig. 4. Motor-agent network: filled boxes and open boxes represent motor-
agents and sensor-agents, respectively. A motor agent has both an actuator
and a sensor (encoder), and sensor-agent has a sensor only.

• If someone claps his hands or shouts, the robot’s ears turn
horizontally and the eyes move.

• If someone stands near the robot, the sonars measure
the distance or the infrared sensors detect him, and the
vehicle moves.

• If someone touches the shoulder covers, the vehicle
moves.

C. Genetic Settings

The MA model enables WAMOEBA-3 to move only re-
actively. However, the direction and amount of movements
are based on human interpretation. Therefore, we configured
the connection weights between the agents (ω in Equation
(5)) with IEC. The weights were encoded into genes using
numerical encoding, which is easy to analyze. The dimension
of the dataset of each gene was 40. The probability of mutation
was 0.5%. If a mutation occurred, the value of the gene was
added by a random value. We also used multipoint crossover
and elitism (the best 40% of the genes were preserved to the
next generation). The population size was 30. The experiment
continued until the 7th generation. Without HMHE, each
subject had to evaluate all the genes (240 genes). Since there
must be mostly the same genes in a genetic pool, evaluating
all of them is not efficient. Using HMHE, each subject had to
evaluate only 56 in total.

D. Interaction and Other settings

The experiment was carried out in a conference room
in our university (Figure 5). The robot (Figure 5 (a)-A)
and the subject (Figure 5 (a)-B) interacted with each other
until he/she wanted to stop. After that, the subject evaluated
how interesting the interaction was and gave a score to the
experimenter (Figure 5 (a)-C).

The number of subjects was 10. 4 of them were the members
of our laboratory, so they had more knowledge of robots
than the others did. The others were also the students at our
university, one female student was included in this group.

In former studies, the interactive experiments were con-
ducted after announcing the robot’s function, so the interaction
was restricted [13]. In this study, we wanted to observe the
mutual adaptation of both the robot and humans. Therefore,
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Fig. 5. Environment

we did not tell the subjects anything about the robot to the
subjects, so they could interact freely with the robot and
evaluate it without bias.

After the 4th and 7th generations, we carried out a survey
about the subject’s impressions of the robot. The questionnaire
items were as follows:

1) Is the robot friendly?
2) Is the robot funny?
3) Do you want to interact with the robot?
4) Do you feel a sense of unity with the robot?
5) Do you and the robot have similar behavior?
6) Is the robot interesting?
7) Can you communicate with the robot?
8) Does the robot do various behaviors?
9) Is the robot’s reaction dynamic?

10) Can the robot communicate with you?
11) Is the robot sensitive?
12) Does the robot seem to be a living creature?
13) Is the robot boring?
14) Is the robot easy to interact with?
15) Is the robot warm-hearted?
16) Is the robot’s bahviour normal?

IV. RESULTS

The experiment was continued until the 7th generation
(including the initial evaluation). Each experiment took 1.5
hours on average. The longest time was 2.5 hours and the
shortest was 46 minutes. Each pheno-types interacted with a
subject for 1.5 minutes on average.

Figure 6 shows the average fitness values of all subjects’ ex-
periments. The fitness value tended to increase throughout the
experiments. The diversity of the fitness value was kept during
the experiment because HMHE could maintain a diversity of
behavior.

Figure 7 shows the questionnaire results. We could see
significant differences for “Friendliness,” “Sense of Unity,”
and “Dynamic Reaction.”

During the experiment, we shot videos and analyzed the
interaction. We counted interaction such as touching the
shoulders, waving hands, clapping hands, and so on. Figure
8 shows the percentage of interactions by body part. The
horizontal axis and the vertical axis, respectively, indicate the
experimental subjects and the percentage. Cool colors indicate
proximal interaction like touching, and warm colors show
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distant interaction like waving hands or clapping hands. The
interaction greatly differs among the subjects.
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Fig. 8. Subjects’ Interactions

V. DISCUSSION

We used IEC to create an adaptive interaction system. Since
we did not tell the subjects anything about the robot, we could
observe various kinds of interction in these experiments. How-
ever, the fitness values tended to increase in the experiments
for almost all of the subjects. This may be because the robot
had enough actuators and sensors to realize various kinds of
interaction so IEC could adapt to the subject’s preferences.

On the other hand, it is important to discuss the subjects’
adaptation. They might have learnt through the interactions,
and changed their behaviors. Therefore, in this section, we fo-
cus on the temporal changes of the interaction. Figure 9 shows
the interaction of the subject J. The horizontal and vertical

axes indicate the generation and the percentage, respectively,
of J’s interaction. The subject J was not a member of our
laboratory, so he had less knowledge of the robot we used.
This is an example of the proximal interaction; J continued to
interact with the robot arms and shoulders. We did not use any
controls on the arms. Though the arms moved like a doll’s, J
did not become bored of manipulating them. He also continued
to push or pull on the robot’s shoulders, and eventually the
robot started to follow the pushing on the shoulders.
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Fig. 9. Subject J (Interaction)

On the other hand, the subject D changed her interaction
through the generations. Figure 10 shows the percentages of
her interaction. The subject D was not a member of our
laboratory, either. In the first generation, touching the robot’s
arms accounted for almost 50% of her interaction. However,
in later generations, touching decreased and distant interaction
increased.
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Fig. 10. Subject D (Interaction)

This is clearly because we did not prepare any control on
the robot’s arms. When D subject noticed that, she changed
her interest to other parts of the robot. In the later part of the
experiment, she tended to watch the robot’s behavior, standing
at a distance of about 1 meter from it. The best individual
moved so that it stood directly in front of her.

Figure 11 shows the interaction of subject B. First he waved
his hands in front of the cameras many times, but gradually
he changed his interaction in the same manner as D.

In this experiment, we implemented moving area detection
in the camera agents. Therefore, the robot was capable of de-
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tecting his waving hands. Nevertheless, the subject B changed
his interaction from using cameras to observing.

Figure 12 shows absolute values of the connection weights
in the MA model. The circle plots represent the connection
weights between the front sonar and the vehicle’s sliding
motion. The square plots represent the connection weights
between the moving area detection and the eye motion.
Throughout the experiment, the connection weights between
the sonar and the vehicle were larger than those between the
camera and eye motion. Therefore, the eye motion was smaller
than the vehicle’s. On the other hand, the vehicle motion was
large and visible to the subject. As a result, the subject started
to observe the robot’s motion from a distance.
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These subjects demonstrated that interaction changes during
the experiments. Despite of the temporal changes of interac-
tion, the fitness values of them increased.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an adaptive human-robot in-
teraction system using Interactive Evolutionary Computation.
Using IEC, a robot can configure its behavior according to the
subjective evaluation of its user. We also proposed Human-
Machine Hybrid Evaluation as an advanced technique of IEC.
In the experiments, we did not tell the experimental subjects
anything about the robot, so they interacted with the robot
and evaluated it freely. In our results, we confirmed the
adaptability of IEC. We also discussed temporal changes in
the interaction. Despite the changes, IEC could adapt to their
changing preferences.

To achieve longer-term interaction, we think that, to im-
prove human-robot communication, we must change a robot’s
interaction more drastically. Using IEC, we can achieve this by
increasing the mutation rate. A sudden change in the robot’s
behavior would make the interaction more interesting. We are
hopeful that IEC will be achieve this eventually.

In our future work, we will improve the internal control
algorithm to achieve more dynamic changes in the interaction.
We have already tested some algorithms, but the number of
parameters to be configured has increased. Therefore we are
using incremental evolution techniques to configure a robot’s
behavior.

ACKNOWLEDGMENTS

This research was supported in part by a Grant-in-Aid for
the WABOT-HOUSE Project by Gifu Prefecture. This work
was also supported in part by the gThe innovative research
on symbiosis technologies for human and robots in the elderly
dominated societyh, 21st Century Center of Excellence (COE)
ProgramCJapan Society for the Promotion of Science.

REFERENCES

[1] Pfeifer, R., Scheier, C.: Understanding Intelligence; MIT Press (1999).
[2] Dautenhahn, K., Werry, I.: Towards interactive robots in autism therapy;

Pragmatics and Cognition 12(1), pp. 1-35.
[3] Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Body Movement Analysis

of Human-Robot Interaction; Proc. of Int’l Joint Conf. on Artificial
Intelligence (IJCAI2003), pp. 177-182, 2003.

[4] Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, In-
telligence, and Technology of Self-Organizing Machines (Intelligent
Robotics and Autonomous Agents); Bradford Books, 2000.

[5] Lund, H., Miglino, O., Pagliarini, L., Billard, A., Ijspeert, A.F Evolu-
tionary Robotics - A Children’s Game; IEEE Int’l Conf. on Evolutionary
Computation (ICEC ’98), pp.154-158 ,1998.

[6] Takagi, H.: Interactive Evolutionary Computation : Fusion of the Capa-
bilities of EC Optimization and Human Evaluation; Proc. of the IEEE,
Supecial Issue on Industrial Innovations Using Soft Computing, Vol. 89,
No. 9, September, 2001.

[7] Kohonen, T.: Self-Organizing Maps; Springer-Verlag, Berlin Heidelberg,
1995.

[8] Holland, J.: Adaptation in Natural and Artificial System; MIT Press,
1992.

[9] Dawkins, R.: The Blind Watchmaker; Essex:Longman, 1986.
[10] Ogata, T., Sugano, S.: Emotional Communication Between Humans and

the Autonomous Robot which has the Emotion Model; Proc. of IEEE
Int’l Conf. on Robotics and Automation (ICRA’99), pp.3177-3182, 1999.

[11] Ogata, T., Matsunaga, M., Sugano, S., Tani, J.: Human Robot Collab-
oration Using Behavioral Primitives; Proc. of IEEE/RSJ Int’l Conf. on
Intelligent Robots and Systems (IROS 2004), pp.1592-1597, Sept. 2004.

[12] Suga, Y., Ogata, T., Sugano, S.: Aquisition of Reactive Motion for
Communication Robots Using Interactive EC; Proc. of IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems (IROS 2004), pp.1198-1203,
Sept. 2004.

[13] Suga, Y., Ikuma, Y., Nagao, D., Ogata, T., Sugano, S.; Interactive
Evolution of Human-Robot Communication in Real World; Proc. of
IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (IROS2005),
August, 2005

[14] Ogata, T., Komiya, T., Sugano, S.: Motion Generation of the Au-
tonomous Robot based on Body Structure, in Proc. of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS2001),
pp. 2338-2343, Oct. 2001.

[15] Mitsunaga, M., Smith, C., Kanda, T., Ishiguro, H., Hagita, N.: Robot
Behavior Adaptation for Human-Robot Interaction based on Policy
Gradient Reinforcement Learning, in Proc. of the 2005 IEEE/RSJ Int’l
Conf. on Intelligent Robots and Systems, pp.1594-1601, 2005.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

	IROS06PageNumber: 
	0: 
	6985446494525127: 3663
	7117197815919749: 3664
	11504083134705118: 3665
	6656134961259027: 3666
	26994507963063613: 3667
	5827397278334321: 3668


	TL1: 
	0: 
	3308341606126782: Proceedings of the 2006 IEEE/RSJ


	TL2: 
	0: 
	32930566499985453: International Conference on Intelligent Robots and Systems


	TL3: 
	0: 
	13837427043246048: October 9 - 15, 2006, Beijing, China




